[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
ChatGPT是一种基于Transformer模型的自然语言处理技术,它由开源人工智能研究机构OpenAI开发。在ChatGPT中,采用了大规模的无监督学习方式,通过预训练和微调的方式来实现自然语言理解和生成。
ChatGPT的基本原理包括以下几个部分:
1.
Tokenization:将输入文本转换为一系列标记(tokens),以便计算机进行处理。ChatGPT使用BPE算法进行分词,将单词或其他符号分解成更小的子单元。
2.
Transformer模型:ChatGPT使用了基于Transformer架构的神经网络模型,该模型具有编码器和解码器两个部分,可以对输入进行编码并生成与之相关的输出。
3. 预训练:ChatGPT使用了大规模的无监督学习方式进行预训练,以便模型可以获取大量的语言知识。
4. 微调:在完成预训练后,ChatGPT模型可以通过微调来适应不同的任务,如问答、对话等。
5. Beam search:在生成回复时,ChatGPT使用了Beam Search算法来选择最佳的N个候选回复,并从中选择得分最高的那一个作为最终回复。
总之,ChatGPT利用了大规模的语料库进行预训练,并使用Transformer模型来实现自然语言理解和生成,能够在各种对话场景中产生流畅、连贯且有意义的回复。