这两周写代码遇到了一些问题,在训练深度学习模型时,出现损失不下降的问题。不同的state-of-art模型已经尝试很多种,损失一直维持在0.02~0.04;以下loss下降方法排除
model 影响。
<>损失下降方法原因
* 数据集不够,往往导致在此数据集上,不能很好的训练模型;或者训练样例特征太复杂,难以拟合。
* 学习率太高,loss肉眼可见的上下徘徊。
* batch size太大,导致loss上下徘徊,难以拟合。
* 尝试不同的优化器,SGD 、 Adam等。
* dropout用的太多了,适当减少。
* 训练时间不足。
<>个人心得:如果模型不能使得loss下降了。
第一反应应该是,要学习的特征太过复杂,简化要学习的特征。比如一张要训练矩阵为[16, 4, 64, 64, 64]的3D图像(batch
size、channel、width、height、depth),可以处理为4 * [16, 4, 64, 64, 16]
类似方法,还可以添加其他处理;也可以降低batch size。
第二反应是,学习率问题。给出一个初始学习率lr和lr_decay,在训练过程中进行学习率下降,下降方式也可以使用其他公式来代替。
''' lr = 0.01 lr_decay = 0.9 optimizer =
torch.optim.Adam(params=model.parameters(), lr=lr) ''' for epoch in range(
max_epoch): # training code... lr_ = lr * lr_decay for param_group in optimizer.
param_groups: param_group['lr'] = lr_ # code...
第三反应,batch size等问题,调参,不多说。
第四反应,还是看模型吧,dropout等问题,还是得看。
觉得有用就点个赞吧!