[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
我比较了使用Python的ano(CPU)、theano(GPU)和scikitlearn(CPU)的处理时间。
但是,我得到了奇怪的结果。
看我画的图。在
处理时间比较:
您可以看到scikit learn的结果,它比atano(GPU)更快。
我检查它的运行时间的程序是从一个有n*40个元素的矩阵计算欧几里德距离矩阵。在
这是代码的一部分。在points = T.fmatrix("points")
edm = T.zeros_like(points)
def get_point_to_points_euclidean_distances(point_id):
euclideans = (T.sqrt((T.sqr(points- points[point_id, : ])).sum(axis=1)))
return euclideans
def get_EDM_CPU(points):
EDM = np.zeros((points.shape[0], points.shape[0])).astype(np.float32)
for row in range(points.shape[0]):
EDM[row, :] = np.sqrt(np.sum((points - points[row, :])**2, axis=1))
return EDM
def get_sk(points):
EDM = sk.pairwise_distances(a, metric='l2')
return EDM
seq = T.arange(T.shape(points)[0])
(result, _) = theano.scan(fn = get_point_to_points_euclidean_distances, \
outputs_info = None , \
sequences = seq)
get_EDM_GPU = theano.function(inputs = [points], outputs = result,
allow_input_downcast = True)
我想GPU比sci工具包学习慢的原因可能是转移时间。所以我用nvprof命令分析了GPU。然后我得到了这个。在
^{pr2}$
传输[CUDA memcpy DtoH]执行了两次{ 1.248 [us], 131.38 [ms] }
转移[CUDA memcpy HtoD]进行了5x{ min: 640 [ns], max: 250.36 [us] }
传输时间约为131.639ms(131.88ms+259.73us)。
但是GPU和scikit learn之间的差距大约是700ms(1.8s-1.1s),因此,这个差距是在传输时间上的。在
它只计算对称矩阵的上三角矩阵吗?在
是什么让scikit学得这么快?在