[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
在MATLAB中使用支持向量机(SVM)进行数据回归预测,你可以遵循以下步骤:
*
准备数据集:
将你的特征矩阵X和目标变量向量y加载到MATLAB工作空间中。确保X和y的维度匹配。
*
拆分数据集:
将数据集划分为训练集和测试集,可以使用cvpartition
函数进行拆分,一个常见的比例是将数据的70%用于训练,30%用于测试。例如,可以选择随机划分数据集生成索引:
cv = cvpartition(size(X, 1), 'HoldOut', 0.3); idxTrain = cv.training; idxTest =
cv.test;
* 创建并拟合模型:
创建SVM回归模型,并使用训练集进行拟合。使用fitrsvm函数来创建SVM回归模型: model = fitrsvm(X(idxTrain,:), y(
idxTrain));
* 进行预测:
使用测试集数据进行预测。调用模型的predict方法来预测目标变量: yPred = predict(model, X(idxTest,:));
* 评估模型:
通过计算均方误差(Mean Squared Error, MSE)或其他适当的指标来评估模型的性能: mse = mean((y(idxTest) -
yPred).^2);
这样,你就可以使用MATLAB中的支持向量机模型进行数据回归预测了。记得根据实际问题对SVM的参数进行调优。