[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
import torch import torch.nn.functional as F import numpy as np import
matplotlib.pyplot as plt x_data = torch.Tensor([[1.0], [2.0], [3.0]]) y_data =
torch.Tensor([[0], [0], [1]]) # 现在的输入y为分类,故只为0或1 #
----------------------------------------------------------------准备数据集 class
LogisticRegressionModel(torch.nn.Module): def __init__(self):
super(LogisticRegressionModel, self).__init__() self.linear =
torch.nn.Linear(1, 1) # 先用linear进行线性变换,输入维度为1,输出维度为1 #
sigmoid函数中没有参数,故不需要在构造函数中初始化,因为没有参数可供训练,直接调用即可 def forward(self, x): y_pred =
F.torch.sigmoid(self.linear(x)) # 再用sigmoid函数处理线性变换后的结果,作为最后的输出 return y_pred
model = LogisticRegressionModel() #
--------------------------------------------------------------设计模型 criterion =
torch.nn.BCELoss(reduction='sum') # BCE损失函数 optimizer =
torch.optim.SGD(model.parameters(), lr=0.01) #
---------------------------------------------------------------构造损失函数和优化器 for
epoch in range(1000): y_pred = model(x_data) loss = criterion(y_pred, y_data)
print(epoch, loss.item()) optimizer.zero_grad() loss.backward()
optimizer.step() #
--------------------------------------------------------------训练周期 x =
np.linspace(0, 10, 200) x_t = torch.Tensor(x).view((200, 1)) y_t = model(x_t) y
= y_t.data.numpy() plt.plot(x, y) plt.plot([0, 10], [0.5, 0.5], c='r')
plt.xlabel('Hours') plt.ylabel('Probability of Pass') plt.grid() plt.show()
此节相较于上一节的改变在于,在神经单元中增加非线性函数部分,此时的非线性函数采用最常用的logistic函数(也被经常叫做sigmoid函数)。由于sigmoid函数中没有需要训练的参数,故不需要在构造函数中初始化。之后直接用sigmoid函数处理线性变换后的结果即可得到y-pred。