[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
<>定义变量
* variable x(20); 表示20维的向量x是决策变量
* variable y(20,30) complex; 表示决策变量y是20x30的矩阵,由复数组成
* variable X(20,20) symmetric; 表示决策变量X是20x20的决策变量,加上symmetric说明必须是对称矩阵
* variables x(20) y(20,30); 声明变量的时候可以同时声明好几个
<>定义目标函数
如果是求最小,一定要是凸函数的形式,求最大用凹函数
* 线性linear: cTx (c转置乘上x),
trace(A * X) A和X如果都是对称的,相乘求迹相当于对应元素相乘再求和,对x里面的变量来说是线性的
* 二次quadratic: xTQx其中Q是半正定
* 范数2-norm: norm(Ax - b,2)若没有制定2,默认的是2范数
<>约束条件
* linear: bTx <= a, ATx <= b;
* 二次quadratic: xTQx <= a; Q一定是半正定的
* 二阶锥约束SOCP:x1平方 + x2平方 + x3平方 <= 0; x3 >= 0;
* 决策变量是矩阵SDP:X >= 0(x要求是半正定的变量)
若在cvx_begin之后没有加上SDP,出现X >= 0 则是要求x出现的每个分量大于等于0
<>定义x属于某个集合
* nonnegative set: x == nonnegative(n)(equals to x >= 0);
表示x属于非负向量组成的集合,这个向量是n维的,==表示属于
* simplex: x == simplex(n)(equals to
)
非负向量,加起来还要为1,如果是二维,那就是直线;若x是三维,就会在第一挂线像是三角形
* semidefinite set半定矩阵:X==semidefinite(n),(equals to X>=0, symmetric)
* 相当于SDP问题里面,x>=0
到这里输完之后cvx_end就结束了
<>其他设置
* solver precision:cvx_precision defalt(low/medium/high/best);
cvx允许调节解的精度
例如 cvx_low
* selecting a solver:cvx_solver sedumi