[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
<>loss不下降,ACC很低(只有0.1,0.2这种)
可能的原因有:
* 数据集有问题(噪声过多或存在过多的标签错误或类别不平衡)
* 梯度爆炸
* 梯度消失
<>笔者遇到的梯度爆炸情况
下图的矩阵是pooler_output(从bert得到的句子向量):
若干个不同的文本,在训练两个batch后可见模型的输出几乎一样了,这正是梯度爆炸的原因
<>梯度异常检验
检验模型权重更新情况、句子向量、loss值
model = BERT() model.to(device) criterion = nn.CrossEntropyLoss() optimizer =
optim.Adam(model.parameters(), lr=0.00001, betas=(0.9, 0.999), eps=1e-6,
weight_decay=0.01) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=3,
gamma=0.1) for i in range(epoch): train_loader = iter(tasks_config[
'train_loader']) for input_data in train_loader: # print(input_data) #
查看模型的输入有无问题 for name, _ in input_data.items(): input_data[name] = input_data[
name].to(torch.float16).long().to(device) label = input_data.pop("label")
optimizer.zero_grad() model_output, pooler_output = model(input_data) Before =
list(model.parameters())[0].clone() # 获取更新前模型的第0层权重 loss = criterion(
model_output, label) loss.backward() #
nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2) # 梯度截断
optimizer.step() # 检验模型的学习情况 After = list(model.parameters())[0].clone() #
获取更新后模型的第0层权重 predicted_label = torch.argmax(model_output, -1) acc =
accuracy_score(label.float().cpu(), predicted_label.view(-1).float().cpu())
print(loss,acc) # 打印mini-batch的损失值以及准确率 print('模型的第0层更新幅度:',torch.sum(After-
Before)) print(pooler_output) # 打印句向量
* 梯度正常,更新幅度大约-15
* 梯度爆炸,更新幅度-1k+
* 梯度消失,更新幅度小于1e-2
<>梯度爆炸的解决方法
* 更换优化器
* 学习率小于1e-4
* 梯度截断
* 最大的正则化参数