[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
* array str 转 int b = a.astype(int)
* numpy 转 tensor a = numpy.array([1, 2, 3]) t = torch.from_numpy(a) print(t)
#tensor([ 1, 2, 3])
3.tensor float 转long
import torch a = torch.rand(3,3) print(a) b = a.long() print(b) #
tensor([[0.1139, 0.3460, 0.4478], # [0.0205, 0.9585, 0.0103], # [0.2299,
0.5627, 0.1236]]) # tensor([[0, 0, 0], # [0, 0, 0], # [0, 0, 0]])
tensor传cuda再转long
import torch a = torch.rand(3,3) print(a) b = a.type(torch.cuda.LongTensor)
print(b) #tensor([[0.6625, 0.0186, 0.0780], # [0.3266, 0.0136, 0.3116], #
[0.8770, 0.2193, 0.1572]]) # tensor([[0, 0, 0], # [0, 0, 0], # [0, 0, 0]],
device='cuda:0')
tensor数据类型转换
torch.long() 将tensor转换为long类型 torch.half() 将tensor转换为半精度浮点类型 torch.int()
将该tensor转换为int类型 torch.double() 将该tensor转换为double类型 torch.float() 将该tensor转换为
float类型 torch.char() 将该tensor转换为char类型 torch.byte() 将该tensor转换为byte类型 torch.
short() 将该tensor转换为short类型
* b转换成和a一样的类型 import torch a = torch.Tensor(2, 3) b = a.long() c = a.type_as(b
) print(a) print(b) print(c) # tensor([[5.5168e+15, 0.0000e+00, 8.4078e-45], #
[0.0000e+00, 1.4013e-45, 0.0000e+00]]) # tensor([[5516833952104448, 0, 0], # [
0, 0, 0]]) # tensor([[5516833952104448, 0, 0], # [ 0, 0, 0]])