[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
1. BCELoss
class torch.nn.BCELoss(weight=None, size_average=True, reduce=True)
* 作用:
计算target 和output 间的二值交叉熵(Binary Cross Entropy)
N :batchsize
如果reduce =True
l(x,y)=mean(L),if size_average=True l(x,y)=sum(L),if size_average=False
用于计算重构误差,如anto-encoder 中
targets y的值是在0和1之间
* 参数 weight(Tensor,optional) - 每个batch 元素的权重. size_average- 默认为True.
True,losses 在minibatch 结合weight 求平均average. False,losses 在minibatch 求相加和sum.
当reduce=False 时,忽略该参数. reduce 默认为True True,losses 在minibatch 求平均或相加和
False,losses 返回per input/target 元素值, 并忽略size_average 输入-input x,(N,*) 输入-target
y,(N,*) 输出- 如果reduce=True,输出标量值,如果reduce=False,输入和输出一致,(N,*)
* 示例 import torch import torch.nn as nn sig = nn.Sigmoid() loss =
nn.BCELoss() input = torch.randn(3, requires_grad=True) target =
torch.empty(3).random_(2) output = loss(sig(input), target) output.backward()
2. BCEWithLogitsLoss
class torch.nn.BCEWithLogitsLoss(weight=None, size_average=True, reduce=True)
* 作用
该loss 层包括了 Sigmoid 层和BCELoss 层. 单类别任务.
数值计算稳定性更好(log-sum-exp trik), 相比于Sigmoid +BCELoss.
如果 reduce =True,
l(x,y)=mean(L),if size_average=True l(x,y)=sum(L),if size_average=False
用于计算重构误差,如auto-encoder 中.
target t[i] 的值是0 和1 之间的数值.
* 参数 weight(Tensor,optional) - 每个batch 元素的权重. size_average- 默认为True.
True,losses 在minibatch 结合weight 求平均average. False,losses 在minibatch 求相加和sum.
当reduce=False 时,忽略该参数. reduce 默认为True True,losses 在minibatch 求平均或相加和
False,losses 返回per input/target 元素值, 并忽略size_average 输入-input x,(N,*) 输入-target
y,(N,*) 输出- 如果reduce=True,输出标量值,如果reduce=False,输入和输出一致,(N,*)