[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
<> principle
Reference link Newton method —— Know . For example, I want to find a function f ( x ) = 0 f(x)=0 f(x)=0 Solution of , Using Newton iterative method, it can be constructed as follows :
x n + 1 = x n − f ( x n ) f ′ ( x n ) x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)} xn+1
=xn−f′(xn)f(xn)
<> code
Below C Language implementation code
#include <math.h> #include <stdio.h> #include <stdlib.h> #define N 200 // Maximum number of iterations
#define EPS 0.000001 // Convergence error double newton(double (*fun)(double), double (*
partialfun)(double), double); // Newton iterative method , Includes two function pointers double fun(double x); // Primitive function
double partialfun(double x); // Derivative function int main(int argc, char* argv[]) { double x0,
root; x0 = 1; root = newton(fun, partialfun, x0); printf(" initial values :%lf\n root :%lf\n",
x0, root); return 0; } double fun(double x) // Primitive function { return cos(x) - x * x * x; }
double partialfun(double x) // Derivative of original function { return -sin(x) - 3 * x * x; } double
newton(double (*fun)(double), double (*partialfun)(double), double xn) { double
xn1; for (int i = 0; i < N; i++) { xn1 = -(*fun)(xn) / (*partialfun)(xn) + xn;
if (fabs(xn1 - xn) < EPS) { printf(" Number of iterations :%d\n", i+1); return xn1; } xn = xn1; }
printf(" Iterative divergence !"); exit(0); }
<> Operation results