[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
Save the model after each era .
filepath You can include named formatting options , It will fill in the log with the values of the epoch and key ( stay on_epoch_end Transfer in ).
for example : If filepath It's weight .{epoch:02d} - {val_loss:.2f} .hdf5, Then the model checkpoint is saved with the era number in the file name and the missing validation .
def __init__(self, filepath: Any, monitor: str = 'val_loss', verbose: int = 0,
save_best_only: bool = False, save_weights_only: bool = False, mode: str =
'auto', period: int = 1) -> None
<> parameter
* filepath:string, The path to save the model file .
* monitor: monitor : Number to monitor .
* verbose detailed : Detailed mode ,0 or 1.
* save_best_only: If save_best_only = True, The latest best model based on the number of monitors is not overridden .
* save_weights_only: If True, Only the weight of the model
preservation (model.save_weights(filepath)), Otherwise, save the complete model (model.save(filepath)).
* mode:{auto,min,max} one of . If save_best_only =
True, According to the maximum or minimum of the number of monitors, the current saved file will be overwritten .
about val_acc, It should be max, about val_loss, It should be min etc . In auto mode , Automatically infer direction from monitored quantity name .
* period: Interval between checkpoints ( Number of periods ).