[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
Sometimes you need to update the content of a table in your work , have access to pandas Update .
* Content to be updated data1 And get the target table of the updated content data2 import pandas as pd import numpy as np data1 = pd
.DataFrame(np.arange(0,25).reshape(5,5),columns= list('abcde'),index=list(
'mnopq')) data2 = pd.DataFrame(np.arange(30,46).reshape(4,4),columns= list(
'abcd'),index=list('mnop')) data2.loc[:,'a'] = np.arange(0,16,5) >>> data1 a b
c d e m0 1 2 3 4 n 5 6 7 8 9 o 10 11 12 13 14 p 15 16 17 18 19 q 20 21 22 23 24
>>> data2 a b c d m 0 31 32 33 n 5 35 36 37 o 10 39 40 41 p 15 43 44 45
* If data2 In a Column values and data1 The same and data2 In b Column value is not empty , Then data1 Of b Update column to data2 Of b Column value . for r1 in range(
data1.shape[0]): for r2 in range(data2.shape[0]): # only data2 Update only when the value of is not empty data1 if (
data1.iloc[r1]['a'] == data2.iloc[r2]['a']) and pd.isna(data2.iloc[r2]['b']) !=
True: # It can't be written as data1.iloc[r1]['b'], This way, the data will not be updated data1.iloc[r1,data1.columns == 'b'] =
data2.iloc[r2,data1.columns == 'b'] >>> data1 a b c d e m 0 31 2 3 4 n 5 35 7 8
9 o 10 39 12 13 14 p 15 43 17 18 19 q 20 21 22 23 24