[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
In addition to the recommended tasks , In the binary task , It can also be calculated , The code is as follows :
# ndcg def get_dcg(y_pred, y_true, k):
# be careful y_pred And y_true It has to be one-to-one , also y_pred The bigger, the closer label=1( In terms of relevance , And label=1 The more relevant ) df = pd.
DataFrame({"y_pred":y_pred, "y_true":y_true}) df = df.sort_values(by="y_pred",
ascending=False) # Yes y_pred Sort in descending order , More and more at the front , The closer we get label=1 df = df.iloc[0:k, :] # Before removal K individual
dcg= (2 ** df["y_true"] - 1) / np.log2(np.arange(1, df["y_true"].count()+1) + 1)
# Position from 1 Start counting dcg = np.sum(dcg) def get_ndcg(df, k): # df contain y_pred and y_true dcg =
get_dcg(df["y_pred"], df["y_true"], k) idcg = get_dcg(df["y_true"], df["y_true"]
, k) ndcg = dcg / idcg return ndcg