[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
One ,drop_duplicates Function usage
pandas Medium drop_duplicates() Function can be passed through SQL Keywords in distinct To understand , The data set is de duplicated according to the specified field .
Two ,drop_duplicates() The specific parameters of the function
*
usage :
DataFrame.drop_duplicates(subset=None, keep=‘first’, inplace=False)
*
Parameter description
parameter explain
subset Duplicate according to the specified column name , Default entire dataset
keep Optional {‘first’, ‘last’,
False}, default first, That is, the first occurrence of the duplicate value is retained by default , And delete other duplicate data ,False Delete all duplicate data .
inplace Do you want to modify the dataset itself , default False
Three ,drop_duplicates Examples of usage
* De duplication according to the specified field , Keep the first occurrence of data import pandas as pd # Create data frame df=pd.DataFrame({ 'a':[1,2,
4,3,3,3,4], 'b':[2,3,3,4,4,5,3] }) print(' Before de duplication :\n',df) # According to field a Carry out de duplication , Keep the first occurrence of data df.
drop_duplicates(['a'],keep='first',inplace=True) print(' After de duplication :\n',df) >>> Before de duplication : a b
0 1 2 1 2 3 2 4 3 3 3 4 4 3 4 5 3 5 6 4 3 After de duplication : a b 0 1 2 1 2 3 2 4 3 3 3 4