[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
	
		
			
			
 
1.  Build a DataFrame
 C=pd.DataFrame({'a':['dog']*3+['fish']*3+['dog'],'b':[10,10,12,12,14,14,10]})
 
2.  Determine whether there are duplicate items 
 use duplicated( ) Function judgment   
 C.duplicated()
 
3.   There are duplicate items , You can use the drop_duplicates() Remove duplicate 
 C.drop_duplicates()
 
4. Duplicated( ) and drop_duplicates( ) The method is to determine all columns by default ( In the example above, we look at two variables a and b Are they all repeated ).
 We can also judge the repetition of a specific column .
 C.duplicated(['a'])      C.drop_duplicates(['a'])
 C.duplicated(['b'])      C.drop_duplicates(['b'])
 
 
5.  norepeat_df = df.drop_duplicates(subset=['A_ID', 'B_ID'], keep='first')
# Remove the order above UNIT_ID and KPI_ID Duplicate rows in column , And keep the first occurrence of the repeated rows 
 supplement : 
  When keep=False Time , That is to remove all duplicate lines  
  When keep=‘first’ Time , Is to keep the first occurrence of the duplicate line  
  When keep=’last’ The last occurrence of the duplicate line is retained . 
 ( be careful , The parameter here is a string , Use quotation marks !!!)