[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
The code is as follows
import os import pandas as pd df =
pd.DataFrame(columns=[' Serial number ',' Event name ',' Name of our account ',' Account name of the other party ',' flow time ',' operator ',' a turnover ',' Water mark ',' Sector code '])
l = [] num = [] def search(path): parents = os.listdir(path) sum = 0 for parent
in parents: # Returns the names of all files and folders in the specified path , And stored in a list child = os.path.join(path,parent) if
os.path.isdir(child): # Multiple paths will be combined search(child) elif os.path.isfile(child): #
If it's a catalog , Then continue to traverse the files in the subdirectory if os.path.splitext(child)[1] == '.xls': #
Split file name and file extension , And the extension is 'xls' d = pd.read_excel(child) for i in range(len(d)):
num.append(os.path.split(child)[1][0:9]) l.append(d)
#search(r'C:\\Users\aming\\Desktop\\ Behavior analysis of College Students \\ Logistics data \\ Student data _LHJ_YJ')
search(r'C:\\Users\aming\\Desktop\\ Behavior analysis of College Students \\ Logistics data \\ Student data _LHJ_YJ\1250111\2012-8-1_2014-7-15')
df = pd.concat(l) da = pd.Series(num) df[' Student number '] = da df =
df.drop(columns=[' Serial number ',' Sector code ',' Serial number ',' operator ',' Water mark '],axis=1) # Delete entire column as NAN Column of
df.to_excel('rone.xlsx',index=False) # Save as result file