analysis : This paper investigates the construction method of binary search tree , Simple recursive structure .

The algorithm design of tree must be associated with recursion , Because the tree itself is the definition of recursion .

And learning to change the name of recursion to non recursion is also a necessary technology .

after all , Recursion can cause stack overflow , On the system of the underlying program must not be used .

But for some mathematical problems , We must learn to use the return to solve .
#include <iostream> using namespace std; struct student { int value; struct
student* lchild; struct student* rchild; }; void arraytotree(int a[], int len,
struct student **p) { if (len) { *p = (struct student *)malloc(sizeof(struct
student)); (*p)->value = a[len/2]; arraytotree(a, len/2, &(*p)->lchild);
arraytotree(a+len/2+1, len-len/2-1, &(*p)->rchild); // Note here a+len/2+1 } else { *p
= NULL; return; } } void display_Tree(struct student **head) { if (*head !=
NULL) { display_Tree(&(*head)->lchild); printf("%d\t",(*head)->value);
display_Tree(&(*head)->rchild); } else return; } int main() { int a[] = {1, 2,
3, 4, 9, 13, 16, 18}; int len = sizeof(a)/sizeof(a[0]); student* root;
arraytotree(a, len, &root); display_Tree(&root); }

 

 

Technology
Daily Recommendation