测试版本

本测试基于 openGauss 版本的 psycopg2 驱动。

import psycopg2 as pg
>>> pg.__libpq_version__
90204
>>> pg.__version__
'2.8.6 (dt dec pq3 ext)'

测试环境

组件说明客户端Rocky Linux 8 虚拟机数据库openGauss 3.0.3 in docker网络本地回路网卡Python3.6.8

测试接口

接口名说明备注cursor.executemany(query, vars_list)执行一个数据库操作,vars_list
列表中的所有参数会逐个被应用到query
中,每组参数都会单独封包发送给服务端。该函数主要用于更新数据库的命令,查询返回的任何结果集都将被丢弃。在其当前实现中,此方法并不比在循环中执行execute()快。psycopg2.extras.execute_batch(cur,
sql, argslist, page_size=100)批量执行一个数据库操作,执行的SQL和 executemany
相同,只是单个数据包发送时会发送一批SQL,数量由page_size决定。这样可以减少和服务端的通信次数execute_batch()也可以和预处理语句(PREPARE,
EXECUTE, DEALLOCATE)一起使用。extras.execute_batch +
预处理语句使用PREPARE提交创建一个statement,然后通过 execute_batch 提交
psycopg2.extras.execute_values(cur, sql, argslist, template=None,
page_size=100, fetch=False)将参数和SQL封装为一条SQL执行,单条SQL中参数的个数由 page_size 决定。

性能对比

INSERT

测试数据

rowsexecutemanyexecute_batchprepare+execute_batchexecute_values10,0009.7820.7070.5010.26650,00052.9793.1232.6371.226100,000111.5046.8314.5572.125

INSERT耗时对比图

INSERT 去除 executemany 对比

UPDATE

测试数据

rowsexecutemanyexecute_batchprepare+execute_batchexecute_values10,0005.0150.6170.4250.35650,00024.6393.4671.9055.237100,00052.0956.9273.47321.102

UPDATE 耗时对比图

DELETE

测试数据

(100000 条数据组耗时太久不做展示)

rowsexecutemanyexecute_batchprepare+execute_batchexecute_values10,00015.0208.6990.2776.20450,000248.154227.9581.455142.732

DELETE 耗时对比图

性能分析

从耗时对比来看,插入、更新、删除在不同的数据量情况下性能是不同的,用户应该根据自己的业务场景来选择使用哪一种操作接口。

插入性能从低到高依次为:

executemany < execute_batch < prepare+execute_batch < execute_values

更新性能从低到高依次为:

executemany < execute_values < execute_batch < prepare+execute_batch

删除性能从低到高依次为:

executemany < execute_batch < execute_values < prepare+execute_batch

性能的高低主要是由于在向服务端发送数据包时的方式不同导致,下面以插入的SQL为例,通过 wireshark 进行抓包可以看出 psycopg2
在通信过程中不同批处理接口的封包情况。

executemany

executemany 提交SQL的时候是逐个应用给的参数,每个SQL都单独发送给服务端

execute_batch

execute_batch 接口区别于 executemany 的是,在发送给后端的单个请求包里的数据会一次性提交一批的SQL,这样可以减少和服务器之间通信的往返次数

prepare+execute_batch

prepare 可以提前在数据库里面创建一个预备语句对象,在执行 prepare 语句的时候,指定的SQL已经经了解析、分析、重写,这样在后续执行
EXECUTE 时就避免了重复解析分析的工作,从而起到优化性能的作用。

execute_values

前面的三个接口,不管是单个提交还是批量提交,最终都是一行数据一个SQL发送到服务端的,所以服务端需要逐个执行,而 execute_values 接口是会按照
page_size 分组参数后,每组参数一次性组成一个SQL进行提交。

测试代码

执行方式:python test.py <api> <row> <operation>

*

<api> 支持: executemany, execute_batch, prepare, execute_values

*
<operation> 支持 insert, update, delete

# coding: utf-8

# Usage: python test.py <api> <count> <operation>

import time
import sys
import psycopg2 as pg
from psycopg2.extras import execute_batch, execute_values
from contextlib import contextmanager

if sys.argv[3] == "insert":
args = [[str(i), i] for i in range(int(sys.argv[2]))]
elif sys.argv[3] == "update":
args = [[i, str(i)] for i in range(int(sys.argv[2]))]
elif sys.argv[3] == "delete":
args = [[i] for i in range(int(sys.argv[2]))]
'''
- *dbname*: the database name
- *database*: the database name (only as keyword argument)
- *user*: user name used to authenticate
- *password*: password used to authenticate
- *host*: database host address (defaults to UNIX socket if not provided)
- *port*: connection port number (defaults to 5432 if not provided)
'''
conf = {
'dbname': "postgres",
'user': 'gaussdb',
'password': '',
'host': '',
'port': 26000,
'sslmode': 'disable'
}

@contextmanager
def calc_time(s):
start = time.time()
yield
end = time.time()
print(f"{s} of '{sys.argv[3]}' cost: ", end - start)

sql_map = {
"insert": {
1: "INSERT INTO t_psycopg2_benchmark VALUES (%s, %s)",
2: "INSERT INTO t_psycopg2_benchmark VALUES ($1, $2)",
3: "INSERT INTO t_psycopg2_benchmark VALUES %s",
},
"update": {
1: "UPDATE t_psycopg2_benchmark as t SET f_value = %s WHERE t.f_key = %s",
2: "UPDATE t_psycopg2_benchmark as t SET f_value = $1 WHERE t.f_key = $2",
3: "UPDATE t_psycopg2_benchmark as t SET f_value = data.v1 FROM (VALUES %s)
AS data (id, v1) WHERE t.f_key = data.id",
},
"delete": {
1: "DELETE FROM t_psycopg2_benchmark as t WHERE t.f_key=%s",
2: "DELETE FROM t_psycopg2_benchmark as t WHERE t.f_key=$1",
3: "DELETE FROM t_psycopg2_benchmark as t WHERE t.f_key IN (%s)",
}
}

def insert_data(conn):
print("* preparing data ...")
args = [[str(i), i] for i in range(int(sys.argv[2]))]
cursor = conn.cursor()
sql = "insert into t_psycopg2_benchmark values %s"
execute_values(cursor, sql, args)
conn.commit()

def main():
try:
conn = pg.connect(**conf)
print("* connect success")
except Exception as e:
print(f"connect failed: {e}")
return

cursor = conn.cursor()

sql = "drop table if exists t_psycopg2_benchmark"
cursor.execute(sql)
sql = "create table t_psycopg2_benchmark (f_key text primary key, f_value
numeric)"
cursor.execute(sql)

api = sys.argv[1]
if sys.argv[3] != "insert":
insert_data(conn)

print("* benchmarking ...")
if api == "executemany":
with calc_time("executemany"):
sql = sql_map[sys.argv[3]][1]
cursor.executemany(sql, args)
conn.commit()
elif api == "execute_batch":
with calc_time("execute_batch"):
sql = sql_map[sys.argv[3]][1]
execute_batch(cursor, sql, args)
conn.commit()
elif api == "prepare":
with calc_time("execute_values"):
cursor.execute(f"PREPARE test_stmt AS {sql_map[sys.argv[3]][2]}")
if sys.argv[3] == "delete":
execute_batch(cursor, "EXECUTE test_stmt (%s)", args)
else:
execute_batch(cursor, "EXECUTE test_stmt (%s, %s)", args)
cursor.execute("DEALLOCATE test_stmt")
conn.commit()
elif api == "execute_values":
with calc_time("execute_values"):
sql = sql_map[sys.argv[3]][3]
execute_values(cursor, sql, args)
conn.commit()
else:
print(f"unknow api: {api}")

if sys.argv[3] != "delete":
cursor.execute("delete from t_psycopg2_benchmark")
conn.commit()

if __name__ == "__main__":
main()

技术
下载桌面版
GitHub
Gitee
SourceForge
百度网盘(提取码:draw)
云服务器优惠
华为云优惠券
腾讯云优惠券
阿里云优惠券
Vultr优惠券
站点信息
问题反馈
邮箱:[email protected]
吐槽一下
QQ群:766591547
关注微信