1.VS2019创建.Net5控制台程序,命名为OnnxDemo

2.NuGet安装以下几个库,注意勾选包括预发行版哦,否则其中一个库你找不到的

3.OnnxRuntime在github上有一个onnx文件叫【FasterRCNN-10.onnx】,下载好并放在我们的onnxs文件夹下

4.准备一些检测的图片放在inputs文件夹中

5.建立outputs文件夹存放测试结果

6.Demo代码如下【Program.cs文件】
using System; using System.Collections.Generic; using System.IO; using
System.Linq; using Microsoft.ML.OnnxRuntime.Tensors; using
SixLabors.ImageSharp; using SixLabors.ImageSharp.Formats; using
SixLabors.ImageSharp.PixelFormats; using SixLabors.ImageSharp.Processing; using
SixLabors.ImageSharp.Drawing.Processing; using SixLabors.Fonts; //using
SixLabors.Fonts; //using System.Drawing; namespace
Microsoft.ML.OnnxRuntime.FasterRcnnSample { class Program { public static void
Main(string[] args) { // OnnxRuntime官网提供的模型文件,已下载到项目运行文件夹下 // Read paths string
modelFilePath = @"onnxs/FasterRCNN-10.onnx"; // 读取模型文件到会话对象中 // Run inference
using var session = new InferenceSession(modelFilePath); //
依次读入每一张待检测的图片,图片在inputs文件夹下 for (int bl = 1; bl <=
Directory.GetFiles("inputs").Length; bl++) { string imageFilePath =
$"inputs/({bl}).jpeg"; string outImageFilePath = $"outputs/{bl}.jpeg"; // 读取图片
// Read image using Image<Rgb24> image = Image.Load<Rgb24>(imageFilePath); //
改变图片大小至模型运算指定的大小 // Resize image float ratio = 800f / Math.Min(image.Width,
image.Height); image.Mutate(x => x.Resize((int)(ratio * image.Width),
(int)(ratio * image.Height))); // Preprocess image var paddedHeight =
(int)(Math.Ceiling(image.Height / 32f) * 32f); var paddedWidth =
(int)(Math.Ceiling(image.Width / 32f) * 32f); Tensor<float> input = new
DenseTensor<float>(new[] { 3, paddedHeight, paddedWidth }); var mean = new[] {
102.9801f, 115.9465f, 122.7717f }; for (int y = paddedHeight - image.Height; y
< image.Height; y++) { image.ProcessPixelRows(im => { var pixelSpan =
im.GetRowSpan(y); for (int x = paddedWidth - image.Width; x < image.Width; x++)
{ input[0, y, x] = pixelSpan[x].B - mean[0]; input[1, y, x] = pixelSpan[x].G -
mean[1]; input[2, y, x] = pixelSpan[x].R - mean[2]; } }); } // 将图片传至模型输入层 //
Setup inputs and outputs var inputs = new List<NamedOnnxValue> {
NamedOnnxValue.CreateFromTensor("image", input) }; // 运行模型得到结果 using
IDisposableReadOnlyCollection<DisposableNamedOnnxValue> results =
session.Run(inputs); // 对运行结果解析 // Postprocess to get predictions var
resultsArray = results.ToArray(); float[] boxes =
resultsArray[0].AsEnumerable<float>().ToArray(); long[] labels =
resultsArray[1].AsEnumerable<long>().ToArray(); float[] confidences =
resultsArray[2].AsEnumerable<float>().ToArray(); var predictions = new
List<Prediction>(); // 置信度不小于0.7则视为检测出该特征 var minConfidence = 0.7f; for (int i
= 0; i < boxes.Length - 4; i += 4) { var index = i / 4; if (confidences[index]
>= minConfidence) { predictions.Add(new Prediction { Box = new Box(boxes[i],
boxes[i + 1], boxes[i + 2], boxes[i + 3]), Label =
LabelMap.Labels[labels[index]], Confidence = confidences[index] }); } } //
给检测的对象画框 // Put boxes, labels and confidence on image and save for viewing
using var outputImage = File.OpenWrite(outImageFilePath); Font font =
SystemFonts.CreateFont("Arial", 28); foreach (var p in predictions) {
image.Mutate(x => { x.DrawLines(Color.Red, 2f, new PointF[] { new
PointF(p.Box.Xmin, p.Box.Ymin), new PointF(p.Box.Xmax, p.Box.Ymin), new
PointF(p.Box.Xmax, p.Box.Ymin), new PointF(p.Box.Xmax, p.Box.Ymax), new
PointF(p.Box.Xmax, p.Box.Ymax), new PointF(p.Box.Xmin, p.Box.Ymax), new
PointF(p.Box.Xmin, p.Box.Ymax), new PointF(p.Box.Xmin, p.Box.Ymin) });
x.DrawText($"{p.Label}, {p.Confidence:0.00}", font, Color.Blue, new
PointF(p.Box.Xmin, p.Box.Ymin)); }); } // 图片保存到outputs文件夹下
image.SaveAsJpeg(outputImage); } } } public class Prediction { public Box Box {
set; get; } public string Label { set; get; } public float Confidence { set;
get; } } public class Box { public Box(float xMin, float yMin, float xMax,
float yMax) { Xmin = xMin; Ymin = yMin; Xmax = xMax; Ymax = yMax; } public
float Xmin { set; get; } public float Xmax { set; get; } public float Ymin {
set; get; } public float Ymax { set; get; } } public static class LabelMap {
static LabelMap() { Labels = new string[] { "", "person", "bicycle", "car",
"motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog",
"horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack",
"umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard",
"sports ball", "kite", "baseball bat", "baseball glove", "skateboard",
"surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife",
"spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot",
"hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed",
"dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell
phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book",
"clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush" }; }
public static string[] Labels { set; get; } } }
7.项目结构如下

技术
下载桌面版
GitHub
Microsoft Store
SourceForge
Gitee
百度网盘(提取码:draw)
云服务器优惠
华为云优惠券
京东云优惠券
腾讯云优惠券
阿里云优惠券
Vultr优惠券
站点信息
问题反馈
邮箱:[email protected]
吐槽一下
QQ群:766591547
关注微信