[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
from sklearn.metrics.cluster import normalized_mutual_info_score as NMI, \
adjusted_mutual_info_score as AMI, adjusted_rand_score as AR, silhouette_score
as SI, calinski_harabasz_score as CH def clustring_indicators (pred, data=None,
labels=None, model_name='cluster', verbose=1): measure_dict = dict() #如果有原始数据
if data is not None: measure_dict['si'] = SI(data, pred) measure_dict['ch'] =
CH(data, pred) #如果数据有标签 if labels is not None: measure_dict['acc'] =
cluster_acc(pred, labels)[0] measure_dict['nmi'] = NMI(labels, pred)
measure_dict['ar'] = AR(labels, pred) measure_dict['ami'] = AMI(labels, pred)
#如果需要打印所有指标 if verbose: char = '' for (key, value) in measure_dict.items():
char += '{}: {:.4f} '.format(key, value) print('{} {}'.format(model_name,
char)) return measure_dict ##参考论文Unsupervised deep embedding for clustering
analysis def cluster_acc(Y_pred, Y): assert Y_pred.size == Y.size D =
max(Y_pred.max(), Y.max()) + 1 w = np.zeros((D, D), dtype=np.int64) for i in
range(Y_pred.size): w[Y_pred[i], Y[i]] += 1 ind = linear_assignment(w.max() -
w) total = 0 for i in range(len(ind[0])): total += w[ind[0][i], ind[1][i]]
return total * 1.0 / Y_pred.size, w