1、确定正样本候选区域(调用get_in_boxes_info确定候选区域)

将gt里面的点或者在center_radius范围内的点作为候选正样本点
def get_in_boxes_info( self, gt_bboxes_per_image, expanded_strides, x_shifts,
y_shifts, total_num_anchors, num_gt, ): expanded_strides_per_image =
expanded_strides[0] x_shifts_per_image = x_shifts[0] *
expanded_strides_per_image y_shifts_per_image = y_shifts[0] *
expanded_strides_per_image x_centers_per_image = ( (x_shifts_per_image + 0.5 *
expanded_strides_per_image) .unsqueeze(0) .repeat(num_gt, 1) ) # [n_anchor] ->
[n_gt, n_anchor] y_centers_per_image = ( (y_shifts_per_image + 0.5 *
expanded_strides_per_image) .unsqueeze(0) .repeat(num_gt, 1) )
gt_bboxes_per_image_l = ( (gt_bboxes_per_image[:, 0] - 0.5 *
gt_bboxes_per_image[:, 2]) .unsqueeze(1) .repeat(1, total_num_anchors) )
gt_bboxes_per_image_r = ( (gt_bboxes_per_image[:, 0] + 0.5 *
gt_bboxes_per_image[:, 2]) .unsqueeze(1) .repeat(1, total_num_anchors) )
gt_bboxes_per_image_t = ( (gt_bboxes_per_image[:, 1] - 0.5 *
gt_bboxes_per_image[:, 3]) .unsqueeze(1) .repeat(1, total_num_anchors) )
gt_bboxes_per_image_b = ( (gt_bboxes_per_image[:, 1] + 0.5 *
gt_bboxes_per_image[:, 3]) .unsqueeze(1) .repeat(1, total_num_anchors) ) b_l =
x_centers_per_image - gt_bboxes_per_image_l b_r = gt_bboxes_per_image_r -
x_centers_per_image b_t = y_centers_per_image - gt_bboxes_per_image_t b_b =
gt_bboxes_per_image_b - y_centers_per_image bbox_deltas = torch.stack([b_l,
b_t, b_r, b_b], 2) is_in_boxes = bbox_deltas.min(dim=-1).values > 0.0
is_in_boxes_all = is_in_boxes.sum(dim=0) > 0 # in fixed center center_radius =
2.5 gt_bboxes_per_image_l = (gt_bboxes_per_image[:, 0]).unsqueeze(1).repeat( 1,
total_num_anchors ) - center_radius * expanded_strides_per_image.unsqueeze(0)
gt_bboxes_per_image_r = (gt_bboxes_per_image[:, 0]).unsqueeze(1).repeat( 1,
total_num_anchors ) + center_radius * expanded_strides_per_image.unsqueeze(0)
gt_bboxes_per_image_t = (gt_bboxes_per_image[:, 1]).unsqueeze(1).repeat( 1,
total_num_anchors ) - center_radius * expanded_strides_per_image.unsqueeze(0)
gt_bboxes_per_image_b = (gt_bboxes_per_image[:, 1]).unsqueeze(1).repeat( 1,
total_num_anchors ) + center_radius * expanded_strides_per_image.unsqueeze(0)
c_l = x_centers_per_image - gt_bboxes_per_image_l c_r = gt_bboxes_per_image_r -
x_centers_per_image c_t = y_centers_per_image - gt_bboxes_per_image_t c_b =
gt_bboxes_per_image_b - y_centers_per_image center_deltas = torch.stack([c_l,
c_t, c_r, c_b], 2) is_in_centers = center_deltas.min(dim=-1).values > 0.0
is_in_centers_all = is_in_centers.sum(dim=0) > 0 # in boxes and in centers
is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all is_in_boxes_and_center
= ( is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor] )
return is_in_boxes_anchor, is_in_boxes_and_center
2、计算候选正样本点与gt间的iou
fg_mask, is_in_boxes_and_center = self.get_in_boxes_info( gt_bboxes_per_image,
expanded_strides, x_shifts, y_shifts, total_num_anchors, num_gt, )
bboxes_preds_per_image = bboxes_preds_per_image[fg_mask] cls_preds_ =
cls_preds[batch_idx][fg_mask] emb_preds_ = emb_preds[batch_idx][fg_mask]
obj_preds_ = obj_preds[batch_idx][fg_mask] num_in_boxes_anchor =
bboxes_preds_per_image.shape[0] if mode == "cpu": gt_bboxes_per_image =
gt_bboxes_per_image.cpu() bboxes_preds_per_image = bboxes_preds_per_image.cpu()
pair_wise_ious = bboxes_iou(gt_bboxes_per_image, bboxes_preds_per_image, False)
3、在候选正样本点间计算cost
gt_cls_per_image = ( F.one_hot(gt_classes.to(torch.int64), self.num_classes)
.float() .unsqueeze(1) .repeat(1, num_in_boxes_anchor, 1) ) pair_wise_ious_loss
= -torch.log(pair_wise_ious + 1e-8) if mode == "cpu": cls_preds_, emb_preds_,
obj_preds_ = cls_preds_.cpu(), emb_preds_.cpu(), obj_preds_.cpu() cls_preds_ =
( cls_preds_.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() *
obj_preds_.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() ) pair_wise_cls_loss =
F.binary_cross_entropy( cls_preds_.sqrt_(), gt_cls_per_image, reduction="none"
).sum(-1) del cls_preds_ cost = ( pair_wise_cls_loss + 3.0 *
pair_wise_ious_loss + 100000.0 * (~is_in_boxes_and_center) ) ( num_fg,
gt_matched_classes, pred_ious_this_matching, matched_gt_inds, ) =
self.dynamic_k_matching(cost, pair_wise_ious, gt_classes, num_gt, fg_mask) del
pair_wise_cls_loss, cost, pair_wise_ious, pair_wise_ious_loss

4、求出预测框与每个gt之间前n_candidate_k个最大iou值并求和取整,作为dynamic_k。从候选正样本点中选取dynamic_k个cost最小的点作为最终的正样本点
def dynamic_k_matching(self, cost, pair_wise_ious, gt_classes, num_gt,
fg_mask): # Dynamic K #
--------------------------------------------------------------- matching_matrix
= torch.zeros_like(cost) ious_in_boxes_matrix = pair_wise_ious n_candidate_k =
min(10, ious_in_boxes_matrix.size(1)) topk_ious, _ =
torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=1) dynamic_ks =
torch.clamp(topk_ious.sum(1).int(), min=1) for gt_idx in range(num_gt): _,
pos_idx = torch.topk( cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
) matching_matrix[gt_idx][pos_idx] = 1.0 del topk_ious, dynamic_ks, pos_idx
anchor_matching_gt = matching_matrix.sum(0) if (anchor_matching_gt > 1).sum() >
0: _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
matching_matrix[:, anchor_matching_gt > 1] *= 0.0 matching_matrix[cost_argmin,
anchor_matching_gt > 1] = 1.0 fg_mask_inboxes = matching_matrix.sum(0) > 0.0
num_fg = fg_mask_inboxes.sum().item() fg_mask[fg_mask.clone()] =
fg_mask_inboxes matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
gt_matched_classes = gt_classes[matched_gt_inds] pred_ious_this_matching =
(matching_matrix * pair_wise_ious).sum(0)[ fg_mask_inboxes ] return num_fg,
gt_matched_classes, pred_ious_this_matching, matched_gt_inds
5、使用步骤4求出的正负样本来计算分类、回归损失

技术
下载桌面版
GitHub
百度网盘(提取码:draw)
Gitee
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:766591547
关注微信