[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
2.3 信号在MATLAB中的运算
利用MATLAB进行离散时间序列的基本运算,掌握基本的MATLAB函数的编写和调试方法,
同时了解对连续时间信号的时域运算,加深对信号的时域运算的理解。
信号的时移、反折和尺度变换
离散序列的时域运算包括信号的相加、相乘,信号的时域变换包括信号的移位、反折、尺度变换等。
在MATLAB中,离散序列的相加、相乘等运算是两个向量之间的运算,因此参加运算法的两个序列向量必须具有相同的维数,否则应进行相应的处理。
% E_2_17.m % 离散序列的时移、反折、尺度变换的实现。 clc; clear; close all; k = -12:12; k1 =
2.*k+4; f = -[stepfun(k,-3)-stepfun(k,-1)] +... 4.*[stepfun(k,-1)-stepfun(k,0)]
+... 0.5*k.*[stepfun(k,0)-stepfun(k,11)]; f1 = -[stepfun(k1,-3)-stepfun(k1,-1)]
+... 4.*[stepfun(k1,-1)-stepfun(k1,0)] +...
0.5*k1.*[stepfun(k1,0)-stepfun(k1,11)]; subplot(221); stem(k,f); axis([-12 12
-1 6]); grid on; xlabel('n'); ylabel('h(n)'); text(-8,3,'f[k]'); title('原离散序列')
subplot(222); stem(k+1,f); axis([-12 12 -1 6]); grid on; xlabel('n');
ylabel('h(n)'); text(-9.5,3,'f[k-1]'); title('离散序列的时移') subplot(223);
stem(k,f1); axis([-12 12 -1 6]); grid on; xlabel('n'); ylabel('h(n)');
text(-8,3,'f[2k+4]'); title('离散序列的尺度变换+时移') subplot(224); stem(2-k,f);
axis([-12 12 -1 6]); grid on; xlabel('n'); ylabel('h(n)');
text(5.5,3,'f[2-k]'); title('离散序列的反折')