ArrayList和Vector使用了数组的实现,可以认为ArrayList或者Vector封装了对内部数组的操作,比如向数组中添加,删除,插入新的元素或者数据的扩展和重定向。

LinkedList使用了循环双向链表数据结构。与基于数组ArrayList相比,这是两种截然不同的实现技术,这也决定了它们将适用于完全不同的工作场景。

LinkedList链表由一系列表项连接而成。一个表项总是包含3个部分:元素内容,前驱表和后驱表。

在下图展示了一个包含3个元素的LinkedList的各个表项间的连接关系。在JDK的实现中,无论LikedList是否为空,链表内部都有一个header表项,它既表示链表的开始,也表示链表的结尾。表项header的后驱表项便是链表中第一个元素,表项header的前驱表项便是链表中最后一个元素

下面以增加和删除元素为例比较ArrayList和LinkedList的不同之处:

1

(1)增加元素到列表尾端:

在ArrayList中增加元素到队列尾端的代码如下:

public boolean add(E
e){ensureCapacity(size+1);//确保内部数组有足够的空间elementData[size++]=e;//将元素加入到数组的末尾,完成添加return true;
      }

ArrayList中add()方法的性能决定于ensureCapacity()方法。ensureCapacity()的实现如下:

public vod ensureCapacity(int minCapacity){modCount++;int oldCapacity=elementData.length;if(minCapacity>oldCapacity){
   //如果数组容量不足,进行扩容Object[]
oldData=elementData;int newCapacity=(oldCapacity*3)/2+1;
 //扩容到原始容量的1.5倍if(newCapacitty<minCapacity)
  //如果新容量小于最小需要的容量,则使用最小//需要的容量大小newCapacity=minCapacity ;
 //进行扩容的数组复制elementData=Arrays.copyof(elementData,newCapacity);} }

可以看到,只要ArrayList的当前容量足够大,add()操作的效率非常高的。只有当ArrayList对容量的需求超出当前数组大小时,才需要进行扩容。扩容的过程中,会进行大量的数组复制操作。而数组复制时,最终将调用System.arraycopy()方法,因此add()操作的效率还是相当高的。

LinkedList 的add()操作实现如下,它也将任意元素增加到队列的尾端:

public boolean add(E e){addBefore(e,header);//将元素增加到header的前面return true; }

其中addBefore()的方法实现如下:

private Entry<E> addBefore(E e,Entry<E> entry){Entry<E> newEntry
= new Entry<E>(e,entry,entry.previous);newEntry.provious.next=newEntry;newEntry.next.previous=newEntry;size++;modCount++;return newEntry;
}

可见,LinkeList由于使用了链表的结构,因此不需要维护容量的大小。从这点上说,它比ArrayList有一定的性能优势,然而,每次的元素增加都需要新建一个Entry对象,并进行更多的赋值操作。在频繁的系统调用中,对性能会产生一定的影响。

1

(2)增加元素到列表任意位置

除了提供元素到List的尾端,List接口还提供了在任意位置插入元素的方法:void add(int index,E element);

由于实现的不同,ArrayList和LinkedList在这个方法上存在一定的性能差异,由于ArrayList是基于数组实现的,而数组是一块连续的内存空间,如果在数组的任意位置插入元素,必然导致在该位置后的所有元素需要重新排列,因此,其效率相对会比较低。

以下代码是ArrayList中的实现:

public void add(int index,E
element){if(index>size||index<0)throw new IndexOutOfBoundsException("Index:"+index+",size:
"+size);ensureCapacity(size+1);System.arraycopy(elementData,index,elementData,index+1,size-index);elementData[index]
= element;size++; }

可以看到每次插入操作,都会进行一次数组复制。而这个操作在增加元素到List尾端的时候是不存在的,大量的数组重组操作会导致系统性能低下。并且插入元素在List中的位置越是靠前,数组重组的开销也越大。

而LinkedList此时显示了优势:

public void add(int index,E
element){addBefore(element,(index==size?header:entry(index))); }

可见,对LinkedList来说,在List的尾端插入数据与在任意位置插入数据是一样的,不会因为插入的位置靠前而导致插入的方法性能降低。

1

(3)删除任意位置元素

对于元素的删除,List接口提供了在任意位置删除元素的方法:

public E remove(int index);

对ArrayList来说,remove()方法和add()方法是雷同的。在任意位置移除元素后,都要进行数组的重组。ArrayList的实现如下:

public E remove(int index){RangeCheck(index);modCount++;E oldValue=(E)
elementData[index];int numMoved=size-index-1;if(numMoved>0)System.arraycopy(elementData,index+1,elementData,index,numMoved);elementData[--size]=null;return oldValue;
}

可以看到,在ArrayList的每一次有效的元素删除操作后,都要进行数组的重组。并且删除的位置越靠前,数组重组时的开销越大。

public E remove(int index){return remove(entry(index));          }
private Entry<E> entry(int index){if(index<0 ||
index>=size)throw new IndexOutBoundsException("Index:"+index+",size:"+size);Entry<E>
e=
header;if(index<(size>>1)){//要删除的元素位于前半段for(int i=0;i<=index;i++)e=e.next;}else{for(int i=size;i>index;i--)e=e.previous;}return e;
}

在LinkedList的实现中,首先要通过循环找到要删除的元素。如果要删除的位置处于List的前半段,则从前往后找;若其位置处于后半段,则从后往前找。因此无论要删除较为靠前或者靠后的元素都是非常高效的;但要移除List中间的元素却几乎要遍历完半个List,在List拥有大量元素的情况下,效率很低。

1

(4)容量参数

容量参数是ArrayList和Vector等基于数组的List的特有性能参数。它表示初始化的数组大小。当ArrayList所存储的元素数量超过其已有大小时。它便会进行扩容,数组的扩容会导致整个数组进行一次内存复制。因此合理的数组大小有助于减少数组扩容的次数,从而提高系统性能。

public  ArrayList(){this(10);   }
public ArrayList (int initialCapacity){super();if(initialCapacity<0)throw new IllegalArgumentException("Illegal
Capacity:"+initialCapacity)this.elementData=new Object[initialCapacity]; }

ArrayList提供了一个可以制定初始数组大小的构造函数:

public ArrayList(int initialCapacity)

现以构造一个拥有100万元素的List为例,当使用默认初始化大小时,其消耗的相对时间为125ms左右,当直接制定数组大小为100万时,构造相同的ArrayList仅相对耗时16ms。

1

(5)遍历列表

遍历列表操作是最常用的列表操作之一,在JDK1.5之后,至少有3中常用的列表遍历方式:forEach操作,迭代器和for循环。

String tmp; long start=System.currentTimeMills();    //ForEach  for(String
s:list){tmp=s; } System.out.println("foreach
spend:"+(System.currentTimeMills()-start)); start = System.currentTimeMills();
for(Iterator<String> it=list.iterator();it.hasNext();){    tmp=it.next(); }
System.out.println("Iterator spend;"+(System.currentTimeMills()-start));
start=System.currentTimeMills(); int size=;list.size();
for(int i=0;i<size;i++){                     tmp=list.get(i); }
System.out.println("for spend;"+(System.currentTimeMills()-start));

构造一个拥有100万数据的ArrayList和等价的LinkedList,使用以上代码进行测试,可以看到,最简便的ForEach循环并没有很好的性能表现,综合性能不如普通的迭代器,而是用for循环通过随机访问遍历列表时,ArrayList表项很好,但是LinkedList的表现却无法让人接受,甚至没有办法等待程序的结束。这是因为对LinkedList进行随机访问时,总会进行一次列表的遍历操作。性能非常差,应避免使用。

技术
今日推荐
下载桌面版
GitHub
百度网盘(提取码:draw)
Gitee
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:766591547
关注微信