[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
python+opencv滤波方法整理
#图像平滑(低通滤波(LPF)有利于去噪,模糊图像,高通滤波(HPF)有利于找到图像边界) #2D滤波器 def d2filter(img): kernel
= np.ones((5, 5), np.float32) / 25 #卷积核 d2filter = cv2.filter2D(img, -1, kernel)
return d2filter #高斯滤波(二维离散卷积核)(高斯核的高和宽(奇数)) def GBlur(img): GBlur = cv2.
GaussianBlur(img, (5, 5), 0) #(5,5)表示的是卷积核大小,0表示的是沿x与y方向上的标准差 return GBlur
#均值滤波(二维离散卷积核) def meanval(img): meanval=cv2.blur(img,(3,5)) # 卷积核大小为3*5,
模板的大小是可以设定的 return meanval
#方框滤波,normalize=1时,表示进行归一化处理,此时图片处理效果与均值滤波相同,如果normalize=0时,表示不进行归一化处理,像素值为周围像素之和,图像更多为白色
def boxfilter(img): boxfilter = cv2.boxFilter(img, -1, (5, 5), normalize=1)
return boxfilter
#中值滤波(统计学)(中值滤波模板就是用卷积框中像素的中值代替中心值,达到去噪声的目的。这个模板一般用于去除椒盐噪声。卷积核的大小也是个奇数。) def
medBlur(img): medBlur = cv2.medianBlur(img, 5) # 中值滤波函数 return medBlur
#双边滤波(保持边缘清晰)双边滤波同时使用了空间高斯权重和灰度相似性高斯权重,确保了边界不会被模糊掉。 def doufilter(img):
#9表示的是滤波领域直径,后面的两个数字:空间高斯函数标准差,灰度值相似性标准差 doufilter = cv2.bilateralFilter(img, 9,
80, 80) return doufilter