[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
1、Yahoo 数据集介绍
以yahoo 为例:
@attribute为列名内容,@attribute Label26 {0,1}表示,列名为Label26
,取值为0或1。列名中包含了对每个对象的属性描述以及多标签内容。Label26表示第26个标签。
@data 为数据内容,{8 1,11 1,....} 表示第8列,取值为1。每一对{}之间的数据,描述一个对象。
2、代码
scipy无法读取稀疏arff文件({}在文件中)。而文件yahoo_arts.arff在其@data部分使用稀疏格式。直接读取会报错valueError:
could not convert string to float: '{8 1',可采用下述代码替代处理。
import numpy as np import pandas as pd def parse_row(line, len_row): line =
line.replace('{', '').replace('}', '') row = np.zeros(len_row) for data in
line.split(','): index, value = data.split() row[int(index)] = float(value)
return row def read_data_arff(filename): # Step 1. Read data by row. with
open(filename, 'r') as fp: file_content = fp.readlines() # Step 2. Get the
columns. columns = [] len_attr = len('@attribute') for line in file_content: if
line.startswith('@attribute '): col_name = line[len_attr:].split()[0]
columns.append(col_name) # Step 3. Get the rows. rows = [] len_row =
len(columns) for line in file_content: if line.startswith('{'):
rows.append(parse_row(line, len_row)) # Step 4. Return the results. df =
pd.DataFrame(data=rows, columns=columns) return df