[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
1、实验目的:
1)了解矩阵运算与数组运算的基本原理和规则;
2)掌握矩阵运算和数组运算的方法;
3)熟悉常见运算函数的使用;
4)熟悉矩阵结构变换的方法;
5)掌握线性方程组的求解方法和技巧。
2、实验内容:
2-1)、已知向量x=[1 2 3],y=[4 5 6],求?的结果。
x = [1 2 3]; y = [4 5 6]; x.*y %对应位置元素运算 x./y %右除 x.\y %左除 x.^2 %数组x每个元素的平方
x.^y %数组x每个元素的y次方 2.^[x y] %2的 1 2 3 4 5 6次幂
2-2)、已知
求下列表达式的值
(1)A+6*B和A-B+I(其中I为单位矩阵)
(2)A*B和A.*B
(3)B^3和B.^3
(4)A/B和B\A
A = [12 34 -4; 34 7 87; 3 65 7]; B = [1 3 -1; 2 0 3; 3 -2 7]; A + 6 * B I =
eye(3); %单位阵 A - B + I A*B %矩阵乘法 A.*B %对应元素相乘 B^3 % B.^3 %每个元素的3次幂 A / B B \ A
2-3)、设有矩阵A1和B1分别为
(1)求它们的乘积C1;
(2)将矩阵C1的左上角2*2子矩阵赋给D1。
A1 = [1:5 ; 6:10; 11:15; 16:20; 21:25]; B1 = [3 0 16; 17 -6 9; 0 23 -4; 9 7 0;
4 13 11]; C1 = A1*B1 %乘积 D1 = C1([1 2],[1 2]) %将矩阵C1的左上角2*2子矩阵赋给D1
2-4)、构建3阶魔方矩阵A2,并实现下列操作:
(1)从矩阵A2生成下三角矩阵A3;
(2)获取矩阵A2的对角线元素形成矩阵A4;
(3)利用向量生成对角矩阵A5;
(4)把矩阵A2左右翻转为A6;
(5)把矩阵A2上下翻转为A7;
(6)把矩阵A2逆时针旋转90°形成矩阵A8;
(7)把矩阵A按列优先原则转换成行向量A9。
A2 = magic(3); %三阶魔方矩阵A2 A3 = tril(A2) %从矩阵A2生成 下三角矩阵A3 A4 = diag(A2) %获取A2
对角线元素 形成矩阵A4, A5 = diag(A4) %对A4使用diag函数(生成对角矩阵) A6 = fliplr(A2) %左右翻转 A7 =
flipud(A2) %上下翻转 A8 = rot90(A2) %逆时针旋转90° A9 = reshape(A2, 1,
9)%把矩阵A按列优先原则转换成行向量
2-5)、分别利用矩阵的逆和矩阵的除法,编程实现对方程的求解。
这里应该是两种方法,之前没有注意到~_~
%方法1:求逆矩阵 A = [1 2 3; 1 4 9; 1 8 27]; B = [5; -2; 6]; A_Ni = inv(A); %求A的逆矩阵 X
= A_Ni * B %方法2:矩阵的除法 A = [1 2 3; 1 4 9; 1 8 27]; B = [5; -2; 6]; X = A \ B
%左除,求解
两种方法答案一致~
2-6)、编程求解方程组的解。
C = [5 6 0 0 0; 1 5 6 0 0; 0 1 5 6 0; 0 0 1 5 6; 0 0 0 1 5]; D = [1; 0; 0; 0;
1]; X = C \ D %求解方程组
l