<>一、简介

*
pandas是一个强大的Python数据分析的工具包,是基于NumPy构建

*
pandas的主要功能:

* 具备对其功能的数据结构DataFrame、Series
* 集成时间序列功能
* 提供丰富的教学运算和操作
* 灵活处理缺失数据
*
安装:pip3 install pandas

<>二、Series

<>1、简介
Series是一种类似于一维数组的对象,由一组数据和一组与之相关的数据标签(索引)组成 Series比较像列表(数组)和字典的结合体
Series支持array的特性(下标): 从ndarray创建Series:Series(arr) 与标量运算:sr*2
两个Series运算:sr1+sr2 索引:sr[0],sr[[1, 2, 3]] 切片:sr[0:2] 通用函数:np.abs(sr)
布尔值过滤:sr[sr>0] Series支持字典的特性(标签): 从字典创建Series:Series(dic) in运算:'a' in sr
键索引:sr['a'],sr[['a', 'b', 'd']]
<>2、初体验
import pandas as pd import numpy as np print(pd.Series([2, 3, 4]))
print('-------------------') print(pd.Series([2, 3, 4], index=['a', 'b', 'c']))
print('-------------------') print(pd.Series(np.arange(3)))
结果:
0 2 1 3 2 4 dtype: int64 ------------------- a 2 b 3 c 4 dtype: int64
------------------- 0 0 1 1 2 2 dtype: int64
<>3、series索引
import pandas as pd import numpy as np sr = pd.Series(np.arange(4)) sr1 =
sr[2:].copy() print(sr1) print('-----------------------') print(sr1.loc[3],
sr1.iloc[0])
结果:
2 2 3 3 dtype: int64 ----------------------- 3 2
<>4、series数据对齐
import pandas as pd sr1 = pd.Series([1, 2, 3], index=['c', 'a', 'b']) sr2 =
pd.Series([4, 5, 6], index=['b', 'c', 'a']) sr3 = pd.Series([4, 5, 6, 7],
index=['b', 'c', 'a', 'd']) print(sr1 + sr2) print('------------') print(sr1 +
sr3) print('------------') print(sr1.add(sr3, fill_value=0))
结果:
a 8 b 7 c 6 dtype: int64 ------------ a 8.0 b 7.0 c 6.0 d NaN dtype: float64
------------ a 8.0 b 7.0 c 6.0 d 7.0 dtype: float64
<>5、series缺失值处理
import pandas as pd sr1 = pd.Series([1, 2, 3], index=['c', 'a', 'b']) sr2 =
pd.Series([4, 5, 6], index=['b', 'c', 'd']) sr = sr1 + sr2 print(sr)
print('-------------------') print(sr.isnull()) print('-------------------')
print(sr.notnull()) print('-------处理缺失值-------') print(sr[sr.notnull()])
print('-------处理缺失值-------') print(sr.dropna()) print('-------------------')
print(sr.fillna(0)) print('-------------------') print(sr.fillna(sr.mean()))
结果:
a NaN b 7.0 c 6.0 d NaN dtype: float64 ------------------- a True b False c
False d True dtype: bool ------------------- a False b True c True d False
dtype: bool -------处理缺失值------- b 7.0 c 6.0 dtype: float64 -------处理缺失值-------
b 7.0 c 6.0 dtype: float64 ------------------- a 0.0 b 7.0 c 6.0 d 0.0 dtype:
float64 ------------------- a 6.5 b 7.0 c 6.0 d 6.5 dtype: float64
<>三、DataFrame

DataFrame是一个表格型的数据结构,含有一组有序的列。DataFrame可以被看做是由Series组成的字典

<>1、DataFrame创建
import pandas as pd df = pd.DataFrame({'one': [1, 2, 3], 'tow': [4, 5, 6]},
index=['a', 'b', 'c']) df1 = pd.DataFrame( {'one': pd.Series([1, 2, 3],
index=['a', 'b', 'c']), 'two': pd.Series([1, 2, 3, 4], index=['b', 'a', 'c',
'd'])}) print(df) print('--------------') print(df1) df1.to_csv('df1.csv')
print('--------------') print(pd.read_csv('test.csv'))

结果:
one tow a 1 4 b 2 5 c 3 6 -------------- one two a 1.0 2 b 2.0 1 c 3.0 3 d
NaN 4 -------------- a b c 0 1 2 3 1 4 5 6 2 7 8 9

<>2、DataFrame常用属性
index 获取索引 T 转置 columns 获取列索引 values 获取值数组 describe() 获取快速统计 import pandas as
pd df = pd.DataFrame({'one': [1, 2, 3], 'tow': [4, 5, 6]}, index=['a', 'b',
'c']) print(df) print('---------------') print(df.index)
print('---------------') print(df.values) print('---------------') print(df.T)
print('---------------') print(df.columns) print('---------------')
print(df.describe())
结果:
one tow a 1 4 b 2 5 c 3 6 --------------- Index(['a', 'b', 'c'],
dtype='object') --------------- [[1 4] [2 5] [3 6]] --------------- a b c one 1
2 3 tow 4 5 6 --------------- Index(['one', 'tow'], dtype='object')
--------------- one tow count 3.0 3.0 mean 2.0 5.0 std 1.0 1.0 min 1.0 4.0 25%
1.5 4.5 50% 2.0 5.0 75% 2.5 5.5 max 3.0 6.0
<>3、DataFrame索引和切片

* DataFrame是一个二维数组类型,所以有行索引和列索引
* DataFrame同样可以通过标签和位置两种方法进行索引和切片
* loc属性和iloc属性
* 使用方法:逗号隔开,前面是行索引,后面是列索引
* 行/列索引部分可以是常规索引、切片、布尔值索引任意搭配 import pandas as pd df = pd.DataFrame({'one':
[1, 2, 3], 'two': [4, 5, 6]}, index=['a', 'b', 'c']) print(df)
print('---------------') print(df.loc['b', 'one']) print('---------------')
print(df.loc['a', :])
结果:
one two a 1 4 b 2 5 c 3 6 --------------- 2 one 1 tow 4 Name: a, dtype: int64
<>4、DataFrame数据对齐与缺失数据处理

* DataFrame对象在运算时,同样会进行数据对齐,其行索引和列索引分别对齐
* DataFrame处理缺失数据的相关的方法:
* dropna(axis=0,where=‘any’,…)
* fillna()
* isnull()
* notnull() import pandas as pd import numpy as np df = pd.DataFrame({'one':
[1, 2, 3], 'two': [4, 5, 6]}, index=['a', 'b', 'c']) df1 = pd.DataFrame({'one':
[1, 2, 3, 4], 'two': [5, 6, 7, 8]}, index=['a', 'b', 'c', 'd']) df.loc['c',
'two'] = np.nan df2 = df + df1 print(df2) print('-----------------')
print(df2.fillna(0)) print('-----------------') print(df2.dropna())
print('-----------------') print(df2.dropna(how='all'))
print('-----------------') print(df2.dropna(how='any'))
print('-----------------') print(df2.loc['c', 'one'])
print('-----------------') print(df) print(df.dropna(axis=0)) # 行
print(df.dropna(axis=1)) # 列
结果:
one two a 2.0 9.0 b 4.0 11.0 c 6.0 NaN d NaN NaN ----------------- one two a
2.0 9.0 b 4.0 11.0 c 6.0 0.0 d 0.0 0.0 ----------------- one two a 2.0 9.0 b
4.0 11.0 ----------------- one two a 2.0 9.0 b 4.0 11.0 c 6.0 NaN
----------------- one two a 2.0 9.0 b 4.0 11.0 ----------------- 6.0
----------------- one two a 1 4.0 b 2 5.0 c 3 NaN one a 1 b 2 c 3 one two a 1
4.0 b 2 5.0
<>四、pandas常用函数
mean(axis=0,skipna=Faluse) 对列(行)求平均值 sum(axis=1) 对列(行)求和 sort_index(axis, ...,
ascending) 对列(行)索引排序 sort_values(by, axis, ascending) 按某一列(行)的值排序 import pandas
as pd import numpy as np df = pd.DataFrame({'one': [2, 1, 3], 'two': [5, 4,
6]}, index=['a', 'b', 'c']) df.loc['c', 'two'] = np.nan print(df)
print('--------------------') print(df.mean()) print('--------------------')
print(df.mean(axis=1)) print('--------------------') print(df.sum(axis=1))
print('--------------------') print(df.sort_values(by='one', ascending=False))
print('--------------------') print(df.sort_index(ascending=False, axis=1))
结果:
one two a 2 5.0 b 1 4.0 c 3 NaN -------------------- one 2.0 two 4.5 dtype:
float64 -------------------- a 3.5 b 2.5 c 3.0 dtype: float64
-------------------- a 7.0 b 5.0 c 3.0 dtype: float64 -------------------- one
two c 3 NaN a 2 5.0 b 1 4.0 -------------------- two one a 5.0 2 b 4.0 1 c NaN 3
<>五、pandas时间对象

<>1、时间处理对象
产生时间对象数组:date_range start 开始时间 end 结束时间 periods 时间长度 freq
时间频率,默认为'D',可以H(our),W(eek),B(usiness),S(emi-)M(onth),(min)T(es),S(encond),A(year),...
import pandas as pd import datetime, dateutil x =
dateutil.parser.parse('02/03/2001') print(x, type(x))
print(pd.date_range('2022-1-1', '2022-2-1')) print(pd.date_range('2022-1-1',
periods=10, freq='H'))
结果:
2001-02-03 00:00:00 <class 'datetime.datetime'> DatetimeIndex(['2022-01-01',
'2022-01-02', '2022-01-03', '2022-01-04', '2022-01-05', '2022-01-06',
'2022-01-07', '2022-01-08', '2022-01-09', '2022-01-10', '2022-01-11',
'2022-01-12', '2022-01-13', '2022-01-14', '2022-01-15', '2022-01-16',
'2022-01-17', '2022-01-18', '2022-01-19', '2022-01-20', '2022-01-21',
'2022-01-22', '2022-01-23', '2022-01-24', '2022-01-25', '2022-01-26',
'2022-01-27', '2022-01-28', '2022-01-29', '2022-01-30', '2022-01-31',
'2022-02-01'], dtype='datetime64[ns]', freq='D') DatetimeIndex(['2022-01-01
00:00:00', '2022-01-01 01:00:00', '2022-01-01 02:00:00', '2022-01-01 03:00:00',
'2022-01-01 04:00:00', '2022-01-01 05:00:00', '2022-01-01 06:00:00',
'2022-01-01 07:00:00', '2022-01-01 08:00:00', '2022-01-01 09:00:00'],
dtype='datetime64[ns]', freq='H')
<>2、时间序列

import numpy as np import pandas as pd sr = pd.Series(np.arange(50),
index=pd.date_range('2021-12-25', periods=50)) print(sr)
print('-----------------------------') print(sr['2022-02'])
print('-----------------------------') print(sr['2021'])
print('-----------------------------') print(sr['2021-12-25':'2021-12-27'])
print('-----------------------------') print(sr.resample('W').sum()) # 周求和,月:M
结果:
2021-12-25 0 2021-12-26 1 2021-12-27 2 2021-12-28 3 2021-12-29 4 2021-12-30 5
2021-12-31 6 2022-01-01 7 2022-01-02 8 2022-01-03 9 2022-01-04 10 2022-01-05 11
2022-01-06 12 2022-01-07 13 2022-01-08 14 2022-01-09 15 2022-01-10 16
2022-01-11 17 2022-01-12 18 2022-01-13 19 2022-01-14 20 2022-01-15 21
2022-01-16 22 2022-01-17 23 2022-01-18 24 2022-01-19 25 2022-01-20 26
2022-01-21 27 2022-01-22 28 2022-01-23 29 2022-01-24 30 2022-01-25 31
2022-01-26 32 2022-01-27 33 2022-01-28 34 2022-01-29 35 2022-01-30 36
2022-01-31 37 2022-02-01 38 2022-02-02 39 2022-02-03 40 2022-02-04 41
2022-02-05 42 2022-02-06 43 2022-02-07 44 2022-02-08 45 2022-02-09 46
2022-02-10 47 2022-02-11 48 2022-02-12 49 Freq: D, dtype: int64
----------------------------- 2022-02-01 38 2022-02-02 39 2022-02-03 40
2022-02-04 41 2022-02-05 42 2022-02-06 43 2022-02-07 44 2022-02-08 45
2022-02-09 46 2022-02-10 47 2022-02-11 48 2022-02-12 49 Freq: D, dtype: int64
----------------------------- 2021-12-25 0 2021-12-26 1 2021-12-27 2 2021-12-28
3 2021-12-29 4 2021-12-30 5 2021-12-31 6 Freq: D, dtype: int64
----------------------------- 2021-12-25 0 2021-12-26 1 2021-12-27 2 Freq: D,
dtype: int64 ----------------------------- 2021-12-26 1 2022-01-02 35
2022-01-09 84 2022-01-16 133 2022-01-23 182 2022-01-30 231 2022-02-06 280
2022-02-13 279 Freq: W-SUN, dtype: int64
<>六、pandas文件处理

<>1、简介

* 数据文件常用格式:csv
* pandas读取文件:从文件名、URL、文件对象中加载数据
* read_csv:默认分隔符为逗号
* read_table:默认分隔符为制表符 read_csv、read_table函数主要参数: sep 指定分隔符,可用正则表达式入'\s+'
header=None 指定文件无列名 name 指定列名 index_col 指定某列作为索引 skip_row 指定跳过某些行 na_values
指定某些字符串表示缺失值 parse_dates 指定某些列是否被解析为日期,类型为布尔值或列表
<>2、read_csv函数

import pandas as pd # parse_dates:解析为时间对象,默认为str df =
pd.read_csv('601318.csv', index_col='date', parse_dates=True) print(df) df =
pd.read_csv('601318.csv', header=None, names=list('abcdefg')) print(df)
结果:
Unnamed: 0 open close high low volume code date 2020-04-03 0 69.10 68.86
69.26 68.41 42025417 601318 2020-04-02 1 68.40 69.67 69.67 67.76 51202929
601318 2020-04-01 2 69.00 69.32 70.47 68.90 55692869 601318 2020-03-31 3 70.11
69.17 70.35 69.01 42536786 601318 2020-03-30 4 68.60 69.15 69.39 68.45 46795596
601318 ... ... ... ... ... ... ... ... 2019-01-11 297 58.00 58.07 58.29 57.50
45756973 601318 2019-01-10 298 56.87 57.50 57.82 56.55 67328223 601318
2019-01-09 299 56.20 56.95 57.60 55.96 81914613 601318 2019-01-08 300 56.05
55.80 56.09 55.20 55992092 601318 2019-01-07 301 57.09 56.30 57.17 55.90
76593007 601318 [302 rows x 7 columns] a b c d e f g NaN date open close high
low volume code 0.0 2020/4/3 69.1 68.86 69.26 68.41 42025417 601318 1.0
2020/4/2 68.4 69.67 69.67 67.76 51202929 601318 2.0 2020/4/1 69 69.32 70.47
68.9 55692869 601318 3.0 2020/3/31 70.11 69.17 70.35 69.01 42536786 601318 ...
... ... ... ... ... ... ... 297.0 2019/1/11 58 58.07 58.29 57.5 45756973 601318
298.0 2019/1/10 56.87 57.5 57.82 56.55 67328223 601318 299.0 2019/1/9 56.2
56.95 57.6 55.96 81914613 601318 300.0 2019/1/8 56.05 55.8 56.09 55.2 55992092
601318 301.0 2019/1/7 57.09 56.3 57.17 55.9 76593007 601318
<>3、to_csv函数
主要参数: sep 指定文件分隔符 na_rep 指定缺失值转换的字符串,默认为空字符串 header=False 不输出列名一行 index=False
不输出行索引一列 cols 指定输出的列,传入列表
<>七、Matplotlib使用

<>1、简介

* Matplotlib是一个强大的Python绘图和数据可视化的工具包
* 安装方法:pip install matplotlib plot函数:绘制折线图 线型linestyle(-,-.,--,..)
点型marker(v,^,s,*,H,+,x,D,o,...) 颜色color(b,g,r,y,k,w,...)
<>2、初体验
import matplotlib.pyplot as plt plt.plot([1, 2, 3, 4], [2, 8, 6, 10], "o-.",
color='red') # 折线图 plt.show()
结果:

<>3、plot函数周边
图像标注: 设置图像标题:plt.title() 设置y轴范围:plt.ylim() 设置x轴名称:plt.xlabel()
设置x轴刻度:plt.xticks() 设置y轴名称:plt.ylabel() 设置y轴刻度:plt.yticks() 设置x轴范围:plt.xlim()
设置曲线图例:plt.legend() import matplotlib.pyplot as plt import numpy as np
plt.plot([1, 2, 3, 4], [2, 8, 6, 10], "o-.", color='red', label='Line A') # 折线图
plt.plot([1, 2, 3, 4], [10, 7, 9, 6], color='green', marker='o', label='Line
B') plt.title('test Plot') plt.xlabel('X') plt.ylabel('Y')
plt.xticks(np.arange(0, 10, 2), ['a', 'b', 'c', 'd', 'e']) plt.legend()
plt.show()
结果:

<>4、pandas与Matplotlib

使用上面的csv文件

<>(1)画股票图像
import matplotlib.pyplot as plt import pandas as pd df =
pd.read_csv('601318.csv',parse_dates=['date'],
index_col='date')[['open','close','high','low']] df.plot() plt.show()
结果:

<>(2)案例
import matplotlib.pyplot as plt import numpy as np x = np.linspace(-1000,
1000, 10000) y1 = x y2 = x * x y3 = 3 * x ** 3 + 5 * x ** 2 + 2 * x + 1
plt.plot(x, y1, color='red', label='y=x') plt.plot(x, y2, color='green',
label='y=x^x') plt.plot(x, y3, color='black', label='3x^3+5x^2+2x+1')
plt.xlim(-1000, 1000) plt.ylim(-1000, 1000) plt.legend() plt.show()
结果:

<>5、Matplotlib画布与子图
画布:figure fig = plt.figure() 图:subplot ax1 = fig.add_subplot(2,2,1) 调节子图间距:
subplots_adjust(left, bottom, right, top, wspace, hspace) import
matplotlib.pyplot as plt fig = plt.figure() ax1 = fig.add_subplot(2, 2, 1) #
两行两列,占第一个位置 ax1.plot([1, 2, 3, 4], [2, 4, 6, 8]) ax2 = fig.add_subplot(2, 2, 4)
ax2.plot([1, 2, 3, 4], [6, 8, 4, 7]) plt.show()
结果:

<>6、Matplotlib柱状图和饼图
plt.plot(x,y,fmt,...) 坐标图 plt.boxplot(data,notch,position) 箱型图
plt.bar(left,height,width,bottom) 条形图 plt.barh(width,bottom,left,height) 横向条形图
plt.polar(theta, r) 极坐标图 plt.pie(data, explode) 饼图
plt.psd(x,NFFT=256,pad_to,Fs) 功率谱密度图 plt.specgram(x,NFFT=256,pad_to,F) 谱图
plt.cohere(x,y,NFFT=256,Fs) X-Y相关性函数 plt.scatter(x,y) 散点图 plt.step(x,y,where)
步阶图 plt.hist(x,bins,normed) 直方图
<>(1)bar案例
import matplotlib.pyplot as plt import numpy as np data = [32, 21, 36, 68]
label = ['Jan', 'Feb', 'Mar', 'Apr'] plt.bar(np.arange(len(data)), data,
color=['green', 'red', 'black', 'yellow'], width=0.3, align='edge')
plt.xticks(np.arange(len(data)), labels=label) # plt.bar([1, 2, 3, 4], [6, 8,
4, 7]) plt.show()
结果:

<>(2)pie案例
import matplotlib.pyplot as plt plt.pie([10, 20, 30, 40], labels=['a', 'b',
'c', 'd'], autopct="%.2f%%", explode=[0, 0, 0, 0.1]) plt.show()
结果:

<>7、Matplotlib绘制K线图

安装:pip3 install mplfinance
import matplotlib.pyplot as plt import pandas as pd import mplfinance as mpf
from matplotlib.dates import date2num df = pd.read_csv('601318.csv',
index_col='date', parse_dates=True) df['time'] =
date2num(df.index.to_pydatetime()) print(df) mycolor =
mpf.make_marketcolors(up="red", down="green", edge="i", wick="i", volume="in")
mystyle = mpf.make_mpf_style(marketcolors=mycolor, gridaxis="both",
gridstyle="-.") mpf.plot(df, type="candle", mav=(5, 10, 20), style=mystyle,
volume=True, show_nontrading=False) plt.show()
结果:
Unnamed: 0 open close high low volume code time date 2020-04-03 0 69.10 68.86
69.26 68.41 42025417 601318 18355.0 2020-04-02 1 68.40 69.67 69.67 67.76
51202929 601318 18354.0 2020-04-01 2 69.00 69.32 70.47 68.90 55692869 601318
18353.0 2020-03-31 3 70.11 69.17 70.35 69.01 42536786 601318 18352.0 2020-03-30
4 68.60 69.15 69.39 68.45 46795596 601318 18351.0 ... ... ... ... ... ... ...
... ... 2019-01-11 297 58.00 58.07 58.29 57.50 45756973 601318 17907.0
2019-01-10 298 56.87 57.50 57.82 56.55 67328223 601318 17906.0 2019-01-09 299
56.20 56.95 57.60 55.96 81914613 601318 17905.0 2019-01-08 300 56.05 55.80
56.09 55.20 55992092 601318 17904.0 2019-01-07 301 57.09 56.30 57.17 55.90
76593007 601318 17903.0

技术
下载桌面版
GitHub
Microsoft Store
SourceForge
Gitee
百度网盘(提取码:draw)
云服务器优惠
华为云优惠券
京东云优惠券
腾讯云优惠券
阿里云优惠券
Vultr优惠券
站点信息
问题反馈
邮箱:[email protected]
吐槽一下
QQ群:766591547
关注微信