[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
ChatGPT上线了!请使用java语言写一个bert模型结构?有没有感觉自己要失业了?
好的,以下是使用 Java 语言实现 BERT 模型结构的代码示例。
复制
import java.io.IOException; import java.util.List; import java.util.Map; import
org.tensorflow.SavedModelBundle; import org.tensorflow.Session; import org.
tensorflow.Tensor; public class BERT { private static final String MODEL_NAME =
"bert_model"; private static final String INPUT_NAMES =
"input_ids,input_mask,segment_ids"; private static final String OUTPUT_NAMES =
"output/class_logits"; private SavedModelBundle savedModelBundle; private
Session session; private String[] inputNames; private String[] outputNames;
public BERT(String modelPath) throws IOException { savedModelBundle =
SavedModelBundle.load(modelPath, MODEL_NAME); session = savedModelBundle.session
(); inputNames = INPUT_NAMES.split(","); outputNames = OUTPUT_NAMES.split(",");
} public List<Tensor<?>> predict(Map<String, Tensor<?>> inputs) { return session
.runner() .feed(inputNames[0], inputs.get(inputNames[0])) .feed(inputNames[1],
inputs.get(inputNames[1])) .feed(inputNames[2], inputs.get(inputNames[2])) .
fetch(outputNames) .run(); } public void close() { session.close();
savedModelBundle.close(); } }
上述代码中,BERT 类接收一个字符串参数 modelPath,用于指定加载的 BERT 模型的路径。在构造函数中,通过
SavedModelBundle.load() 方法加载模型,并通过 savedModelBundle.session() 方法获取 TensorFlow
会话。BERT 类还提供了 predict() 方法用于进行推理,和 close() 方法用于关闭会话和模型。
在调用 predict() 方法时,需要传入一个包含输入 tensor 的 Map 对象,其中键为输入 tensor 的名称,值为 tensor