Matlab自带的粒子群函数 particleswarm使用的是自适应的邻域搜索模式

%% Matlab自带的粒子群函数 particleswarm % particleswarm函数是求最小值的 %
如果目标函数是求最大值则需要添加负号从而转换为求最小值。 clear;clc % Matlab中粒子群算法函数的参考文献 % Mezura-Montes, E.
, and C. A. Coello Coello. "Constraint-handling in nature-inspired numerical
optimization: Past, present and future." Swarm and Evolutionary Computation.
2011, pp. 173–194. % Pedersen, M. E. "Good Parameters for Particle Swarm
Optimization." Luxembourg: Hvass Laboratories, 2010. % Iadevaia, S., Lu, Y.,
Morales, F. C., Mills, G. B. & Ram, P. T. Identification of optimal drug
combinations targeting cellularnetworks: integrating phospho-proteomics and
computational network analysis. Cancer Res. 70, 6704-6714 (2010). % Liu,
Mingshou, D. Shin , and H. I. Kang . "Parameter estimation in dynamic
biochemical systems based on adaptive Particle Swarm Optimization." Information,
Communications and Signal Processing, 2009. ICICS 2009. 7th International
Conference on IEEE Press, 2010. %% 求解函数y = x1^2+x2^2-x1*x2-10*x1-4*x2+60在[-15,
15]内的最小值(最小值为8) narvs = 2; % 变量个数 x_lb = [-15 -15]; % x的下界(
长度等于变量的个数,每个变量对应一个下界约束) x_ub = [15 15]; % x的上界 [x,fval,exitflag,output] =
particleswarm(@Obj_fun2, narvs, x_lb, x_ub) %% 直接调用particleswarm函数进行求解测试函数
narvs = 30; % 变量个数 % Sphere函数 % x_lb = -100*ones(1,30); % x的下界 % x_ub = 100*ones
(1,30); % x的上界 % Rosenbrock函数 x_lb = -30*ones(1,30); % x的下界 x_ub = 30*ones(1,30)
; % x的上界 % Rastrigin函数 % x_lb = -5.12*ones(1,30); % x的下界 % x_ub = 5.12*ones(1,30
); % x的上界 % Griewank函数 % x_lb = -600*ones(1,30); % x的下界 % x_ub = 600*ones(1,30);
% x的上界 [x,fval,exitflag,output] = particleswarm(@Obj_fun3,narvs,x_lb,x_ub) %%
绘制最佳的函数值随迭代次数的变化图 options =optimoptions('particleswarm','PlotFcn','pswplotbestf'
) [x,fval] = particleswarm(@Obj_fun3,narvs,x_lb,x_ub,options) %% 展示函数的迭代过程
options =optimoptions('particleswarm','Display','iter'); [x,fval] =
particleswarm(@Obj_fun3,narvs,x_lb,x_ub,options) %% 修改粒子数量,默认的是:min(100,10*nvars
) options = optimoptions('particleswarm','SwarmSize',50); [x,fval] =
particleswarm(@Obj_fun3,narvs,x_lb,x_ub,options) %%
在粒子群算法结束后继续调用其他函数进行混合求解(hybrid n.混合物合成物; adj.混合的; 杂种的;) options = optimoptions(
'particleswarm','HybridFcn',@fmincon); [x,fval] = particleswarm(@Obj_fun3,narvs,
x_lb,x_ub,options) %% 惯性权重的变化范围,默认的是0.1-1.1 options = optimoptions(
'particleswarm','InertiaRange',[0.2 1.2]); [x,fval] = particleswarm(@Obj_fun3,
narvs,x_lb,x_ub,options) %% 个体学习因子,默认的是1.49(压缩因子) options = optimoptions(
'particleswarm','SelfAdjustmentWeight',2); [x,fval] = particleswarm(@Obj_fun3,
narvs,x_lb,x_ub,options) %% 社会学习因子,默认的是1.49(压缩因子) options = optimoptions(
'particleswarm','SocialAdjustmentWeight',2); [x,fval] = particleswarm(@Obj_fun3,
narvs,x_lb,x_ub,options) %% 最大的迭代次数,默认的是200*nvars options = optimoptions(
'particleswarm','MaxIterations',10000); [x,fval] = particleswarm(@Obj_fun3,narvs
,x_lb,x_ub,options) %% 领域内粒子的比例 MinNeighborsFraction,默认是0.25 options =
optimoptions('particleswarm','MinNeighborsFraction',0.2); [x,fval] =
particleswarm(@Obj_fun3,narvs,x_lb,x_ub,options) %% 函数容忍度FunctionTolerance,
默认1e-6, 用于控制自动退出迭代的参数 options = optimoptions('particleswarm','FunctionTolerance'
,1e-8); [x,fval] = particleswarm(@Obj_fun3,narvs,x_lb,x_ub,options) %%
最大停滞迭代数MaxStallIterations, 默认20, 用于控制自动退出迭代的参数 options = optimoptions(
'particleswarm','MaxStallIterations',50); [x,fval] = particleswarm(@Obj_fun3,
narvs,x_lb,x_ub,options) %% 不考虑计算时间,同时修改三个控制迭代退出的参数 tic options = optimoptions(
'particleswarm','FunctionTolerance',1e-12,'MaxStallIterations',100,
'MaxIterations',100000); [x,fval] = particleswarm(@Obj_fun3,narvs,x_lb,x_ub,
options) toc %% 在粒子群结束后调用其他函数进行混合求解 tic options = optimoptions('particleswarm',
'FunctionTolerance',1e-12,'MaxStallIterations',50,'MaxIterations',20000,
'HybridFcn',@fmincon); [x,fval] = particleswarm(@Obj_fun3,narvs,x_lb,x_ub,
options) toc

技术
今日推荐
下载桌面版
GitHub
百度网盘(提取码:draw)
Gitee
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:766591547
关注微信