K邻算法(k-Nearest Neighbor)是最常用也是最简单的机器学习算法之一。
关于该算法正式的表述是:如果一个样本在特征空间中的K个最相似(特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别的样本的特性。
通俗点说,就是近朱者赤近墨者黑,你周围的狐朋狗友多数属于哪一类人,你大概率也属于这一类人。具体说就是,找到跟你关系最近的K个朋友,看看他们是哪一类人(喜欢打什么游戏、是学霸还是学渣等)
在KNN中,通过计算对象间距离来为各个对象之间的非相似性指标,距离一般采用欧式距离或曼哈顿距离。在K个对象中投票表决进行决策。
在scikit-learn中KNN的类是 KNeighborsClassifier,下面以经典的鸢尾花数据集做个案例实验
# 从sklearn 导入KNeighborsClassifier方法 from sklearn.neighbors import
KNeighborsClassifier import numpy as np from pandas import read_csv #导入鸢尾花集数据
filename = 'data/iris/iris.data.csv' names =
['separ-length','separ-width','petal-length','petal-width','class'] dataset =
read_csv(filename, names=names) from sklearn.model_selection import
train_test_split from sklearn.metrics import accuracy_score #分离数据集 array =
dataset.values X = array[:,0:4] Y = array[:,4] validation_size = 0.2 seed = 7
X_train,X_validation,Y_train,Y_validation = \ train_test_split(X, Y,
test_size=validation_size, random_state=seed) #定义数据集 model =
KNeighborsClassifier(n_neighbors=3, algorithm='ball_tree')
#KNeighborsClassifier(algorithm='ball_tree', leaf_size=30,
metric='minkowski',,metric_params=None, n_jobs=None, n_neighbors=4,
p=2,,weights='uniform') model.fit(X_train, Y_train) # 预测
print(model.predict([[4.7, 3.2,1.3,0.2]])) # 输出某个具体数据的分类结果
print(model.predict_proba([[4.7, 3.2,1.3,0.2]])) # 预测属数据于各个标签的概率
print(model.score(X, Y)) # 输出模型训练结果准确率
打印出结果如下:
['Iris-setosa'] #预测输入的数据属于 Iris-setosa 这一种鸢尾花 [[1. 0. 0.]] #预测属于三种鸢尾花的概率分别为
1,0, 0,就是比较笃定地认为属于第一种了。 0.96 #在测试集上整体的预测准确率为0.96