首先需要说明的是拓扑排序是针对有向无环图来说的,有向无环图也就是DAG图,顾名思义就是整张图中的边都带有方向而且不存在环。

 

上面这张图就是一个简单的拓扑图,而下面这张图就不算是一个拓扑图

 原因就在于下面这张图存在环B->C->D->B

现在我们知道什么是拓扑图了,下面我来说一下拓扑图对应的拓扑序列。

常见求拓扑序列的方法:

(1)从拓扑图中找到一个入度为0的点

(2)删除入度为0的点及与其相关联的边(相对应的边的另一端的点的入度会减一)

(3)在删边过程中遇到入度为0的点就加入队列

(4)重复上述操作,直到所有的点入度均变为0

容易发现拓扑图对应的拓扑序列不一定是唯一的,因为我们有可能同时找到多个入度为0的点,这个时候先删哪一个都可以,还以上面的图片为例求其拓扑序列:

其中一个拓扑序列对应A->C->B->D->E(下面这个图)

 还有一个拓扑序列对应A->B->C->D->E(下面这个图)

 
如果一个图是连通的,我们可以通过入队的点数来判断图中是否存在环,有向无环图保证了图中的每一个点都能够入队一次,如果图中存在环,那么入队的点数一定小于图中所有点的点数和。

 下面我给出拓扑序列核心代码:
void topsort() { queue<int> q; for(int i=1;i<=n;i++) if(!ru[i])
q.push(i);//入度为0的点入队 tt=0; while(q.size()) { int begin=q.top(); q.pop();
st[++tt]=begin;//记录拓扑序列 for(int i=h[begin];i!=-1;i=ne[i]) { int j=e[i];
ru[j]--; if(!ru[j]) q.push(j);//入度为0的点入队 } } }

技术
下载桌面版
GitHub
Microsoft Store
SourceForge
Gitee
百度网盘(提取码:draw)
云服务器优惠
华为云优惠券
京东云优惠券
腾讯云优惠券
阿里云优惠券
Vultr优惠券
站点信息
问题反馈
邮箱:[email protected]
吐槽一下
QQ群:766591547
关注微信