[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
import numpy as np import torch as torch # 0 1 0 1 1 # 1 0 1 0 0 # 0 1 0 0 1 #
1 0 0 0 1 # 1 0 1 1 0 x=np.array([[0 ,1 ,0 ,1, 1], [1 ,0, 1, 0, 0],[0, 1, 0, 0,
1],[1, 0, 0, 0, 1],[1, 0, 1, 1, 0]]) # a = torch.tensor([[1,2,3],[4,5,6]]) a,b
= np.linalg.eig(x) for i in range (len(a)): print('特征值,',a[i],'对应的特征向量',b[:,i])
特征值, 2.4811943040920177 对应的特征向量 [-0.5298991 -0.35775124 -0.35775124
-0.42713229 -0.5298991 ]
特征值, -2.0000000000000018 对应的特征向量 [-5.00000000e-01 5.00000000e-01
-5.00000000e-01 1.62803112e-16
5.00000000e-01]
特征值, -1.170086486626034 对应的特征向量 [-0.43248663 0.19929465 0.19929465
0.73923874 -0.43248663]
特征值, 1.5260202360125897e-17 对应的特征向量 [ 5.00000000e-01 5.00000000e-01
-5.00000000e-01 2.79154475e-16
-5.00000000e-01]
特征值, 0.6888921825340182 对应的特征向量 [ 0.1793384 -0.57645095 -0.57645095
0.52065737 0.1793384 ]