[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
一般来说,用CNN来进行图像分类任务可以获得很高的准确率,而LSTM一般用于自然语言处理方面,但是,用LSTM也是可以实现图像分类并得到较高准确率的。代码如下:
import tensorflow as tf import tensorflow.keras as keras from tensorflow.keras
import models, layers, optimizers import matplotlib.pyplot as plt # Mnist数据集加载 (
x_train_all, y_train_all), (x_test, y_test) = keras.datasets.mnist.load_data()
# Mnist数据集简单归一化 x_train_all, x_test = x_train_all / 255.0, x_test / 255.0
x_train, x_test = x_train_all[:50000], x_train_all[50000:] y_train, y_test =
y_train_all[:50000], y_train_all[50000:] print(x_train.shape) # 构建模型 inputs =
layers.Input(shape=(x_train.shape[1], x_train.shape[2]), name='inputs') print(
inputs.shape) lstm = layers.LSTM(units=128, return_sequences=False)(inputs)
print(lstm.shape) outputs = layers.Dense(10, activation='softmax')(lstm) print(
outputs.shape) lstm = keras.Model(inputs, outputs) # 查看模型 lstm.compile(optimizer
=keras.optimizers.Adam(0.001), loss='sparse_categorical_crossentropy', metrics=[
'accuracy']) lstm.summary() # 训练模型 history = lstm.fit(x_train, y_train,
batch_size=32, epochs=50, validation_split=0.1) # 绘制准确率图像 data = {} data[
'accuracy'] = history.history['accuracy'] data['val_accuracy'] = history.history
['val_accuracy'] pd.DataFrame(data).plot(figsize=(8, 5)) plt.grid(True) plt.axis
([0, 30, 0, 1]) plt.show() # 绘制损失图像 data = {} data['loss'] = history.history[
'loss'] data['val_loss'] = history.history['val_loss'] pd.DataFrame(data).plot(
figsize=(8, 5)) plt.grid(True) plt.axis([0, 30, 0, 1]) plt.show() # 验证模型: lstm.
evaluate(x_test, y_test, verbose=2)