[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
1.求矩阵的秩
import numpy as np A = np.mat([ [1,2,1], [2,4,6], [3,3,2]],int) rank =
np.linalg.matrix_rank(A)
2.求解齐次线性方程组
齐次线性方程组要么有无穷多解,要么只有零解
对于AX=0,对A做SVD分解可得
由高等代数知识得,求解齐次线性方程组就是对系数矩阵A做SVD分解后,从最后一行向上选取出的n-r行向量的线性组合
这里的r是系数矩阵A的秩
如果没有记错的话,这个程序得自己写。。。
import numpy as np def simplify(ans): try: q = eval(input("decimal digit"))
type(q) == type(5) except: q = 5 for i in ans: Min = min([abs(c) for c in i])
ans[ans.index(i)] = [round(d/Min,q) for d in i] return ans def
homogeneous_linequationsolve(A): ans = [] rank = np.linalg.matrix_rank(A)
u,s,vt = np.linalg.svd(A) A = np.array(A) n = len(A[0]) vt = np.array(vt)[::-1]
if n-rank > 0: for i in range(0,n-rank): ans.append(vt[i]) else: return("only
null solution") ans = simplify(ans) return ans A =
np.mat([[2,1,3,7],[0,7,1,4],[0,0,1,3]]) print(homogeneous_linequationsolve(A))
print("over")
得到输出:
[[7.5, -1.0, -21.0, 7.0]]
那么:
方程的解就是
x = k1 * |7.5 -1 -21 7|
3.求解非齐次线性方程组
这个倒是很有现用的方法
为了解方程组
a = np.mat([[2, 4], [1, 3]]) b = np.mat([1, 1]).T x = np.linalg.solve(a, b)
print(x)
4.下期吧