[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
<>显示标准nii.gz或nii文件
import numpy as np import nibabel as nib from ipywidgets import interact,
interactive, IntSlider, ToggleButtons import matplotlib.pyplot as plt %
matplotlib inlineimport seaborn as sns sns.set_style('darkgrid')
<>查看文件类型
image_path1 = "case0001_img.nii" image_obj1 = nib.load(image_path1) print(
f'Type of the image{type(image_obj1)}')
Type of the image <class ‘nibabel.nifti1.Nifti1Image’>
<>将nii.gz文件转换为array
image_data1 = image_obj1.get_fdata() type(image_data1)
numpy.ndarray
<>显示文件的维度
height1, width1, depth1 = image_data1.shape print(f"The image object height: {
height1}, width:{width1}, depth:{depth1}")
The image object height: 512, width:512, depth:24
<>查看文件的信息以及图像像素的最大值以及最小值
print(f'image value range: [{image_data1.min()}, {image_data1.max()}]') print(
image_obj1.header.keys()) pixdim1 = image_obj1.header['pixdim'] print(f'z轴分辨率: {
pixdim1[3]}') print(f'in plane 分辨率: {pixdim1[1]} * {pixdim1[2]}')
<>显示某一层的图像
这里的12指的就是第三维度为12 的
plt.imshow(image_data1[:, :, 12], cmap='gray') plt.axis('off');