1. 缓存预热的思路

a.提前给redis中嵌入部分数据,再提供服务

b.肯定不可能将所有数据都写入redis,因为数据量太大了,第一耗费的时间太长了,第二redis根本就容纳不下所有的数据

c.需要更具当天的具体访问情况,试试统计出频率较高的热数据

d.然后将访问频率较高的热数据写入到redis,肯定是热数据也比较多,我们也得多个服务并行的读取数据去写,并行的分布式的缓存预热

e.然后将嵌入的热数据的redis对外提供服务,这样就不至于冷启动,直接让数据库奔溃了

具体的实时方案:

1. nginx+lua将访问量上报到kafka中

要统计出来当前最新的实时的热数据是哪些,我们就得将商品详情页访问的请求对应的流量,日志,实时上报到kafka中,

2. storm从kafka中消费数据,实时统计出每个商品的访问次数,访问次数基于LRU内存数据结构的存储方案

优先用内存中的一个LRUMap去存放,性能高,而且没有外部依赖

否则的话,依赖redis,我们就是要防止reids挂掉数据丢失的情况,就不合适了;用mysql,扛不住高并发读写;用hbase,hadoop生态系统,维护麻烦,太重了,其实我们只要统计出一段时间访问最频繁的商品,然后对它们进行访问计数,同时维护出一个前N个访问最多的商品list即可

计算好每个task大致要存放的商品访问次数的数量,计算出大小,然后构建一个LURMap,apache commons
collections有开源的实现,设定好map的最大大小,就会自动根据LRU算法去剔除多余的数据,保证内存使用限制,即使有部分数据被干掉了,然后下次来重新开始技术,也没什么关系,因为如果他被LRU算法干掉,那么它就不是热数据,说明最近一段时间很少访问,

3. 每个storm task启动的时候,基于zk分布式锁,将自己的id写入zk的一个节点中

4. 每个storm task负责完成自己这里的热数据的统计,比如每次计数过后,维护一个钱1000个商品的list,每次计算完都更新这个list

5. 写一个后台线程,每个一段时间,比如一分钟,将排名钱1000的热数据list,同步到zk中

技术
下载桌面版
GitHub
Microsoft Store
SourceForge
Gitee
百度网盘(提取码:draw)
云服务器优惠
华为云优惠券
京东云优惠券
腾讯云优惠券
阿里云优惠券
Vultr优惠券
站点信息
问题反馈
邮箱:[email protected]
吐槽一下
QQ群:766591547
关注微信