[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多 4 个正整数的平方和。
如果把 0 包括进去,就正好可以表示为 4 个数的平方和。
比如:
5=0^2+0^2+1^2+2^2
7=1^2+1^2+1^2+2^2
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对 4 个数排序:
0≤a≤b≤c≤d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法。
输入格式
输入一个正整数 N。
输出格式
输出4个非负整数,按从小到大排序,中间用空格分开。
数据范围
0<N<5∗106
输入样例:
5
输出样例:
0 0 1 2
暴力:能过掉大部分的数据
但结果超时
#include <cstdio> using namespace std; const int N = 1e7; int nn ; int main(){
scanf("%d",&nn); for(int i = 0;i<2500;i++){ for(int j = i;j<2500;j++){ for(int
m =j;m<2500;m++){ for(int n = m;n<2500;n++){ if(i*i+j*j+m*m+n*n==nn){
printf("%d %d %d %d",i,j,m,n); return 0; } } } } } return 0; }
优化:
减掉一层for循环 又过了两个测试点 结果仍然超时
#include <cstdio> #include <cmath> using namespace std; const double N = 1e7;
double nn ; int main(){ scanf("%lf",&nn); for(double i = 0;i<2500;i++){
for(double j = i;j<2500;j++){ for(double m =j;m<2500;m++){
if(sqrt(nn-i*i-j*j-m*m)==(int)sqrt(nn-i*i-j*j-m*m)){ printf("%d %d %d
%d",(int)i,(int)j,(int)m,(int)sqrt(nn-i*i-j*j-m*m)); return 0; } } } } return
0; }
优化判断过程:
#include <cstdio> #include <cmath> using namespace std; const int N = 1e7; int
nn ; int main(){ scanf("%d",&nn); for(int i = 0;i*i<nn;i++){ for(int j =
i;i*i+j*j<nn;j++){ for(int m =j;i*i+j*j+m*m<nn;m++){ int t = nn-i*i-j*j-m*m;
int k = sqrt(t); if(k*k==t){ printf("%d %d %d %d",i,j,m,k); return 0; } } } } }