动态演示:
思路分析
*
相邻两个数两两相比,n[i]跟n[j+1]比,如果n[i]>n[j+1],则将连个数进行交换,
*
j++, 重复以上步骤,第一趟结束后,最大数就会被确定在最后一位,这就是冒泡排序又称大(小)数沉底,
*
i++,重复以上步骤,直到i=n-1结束,排序完成。
负杂度分析
*
不管原始数组是否有序,时间复杂度都是O(n2)。因为没一个数都要与其他数比较一次,(n-1)2次,分解:n2+2n-1,
去掉低次幂和常数,剩下n2,所以最后的时间复杂度是n2
*
空间复杂度是O(1),因为只定义了一个辅助变量,与n的大小无关,所以空间复杂度为O(1)
如果只交换5列数:
# 1.图解如下:
<>2.冒泡排序是什么意思?
<>3.冒泡排序升序思路:
核心代码如下:
for (i = n - 1; i > 0; i--) { for (j = 0; j < i; j++) { if (a[j] > a[j + 1]) {
temp= a[j]; a[j] = a[j + 1]; a[j + 1] = temp; } } }
<>4.PTA例题:
本题要求使用冒泡法排序,将给定的n个整数从小到大排序后输出,并输出排序过程中每一步的中间结果。
冒泡排序的算法步骤描述如下:
第1步:在未排序的n个数(a[0]〜
a[n−1])中,从a[0]起,依次比较相邻的两个数,若邻接元素不符合次序要求,则对它们进行交换。本次操作后,数组中的最大元素“冒泡”到a[n−1];
第2步:在剩下未排序的n−1个数(a[0] 〜
a[n−2])中,从a[0]起,依次比较相邻的两个数,若邻接元素不符合次序要求,则对它们进行交换。本次操作后,a[0] 〜
a[n−2]中的最大元素“冒泡”到a[n−2]; ……
第i步:在剩下未排序的n−k个数(a[0]〜a[n−i])中,从a[0]起,依次比较相邻的两个数,若邻接元素不符合次序要求,则对它们进行交换。本次操作后,a[0]
〜 a[n−i]中的最大元素“冒泡”到a[n−i]; …… 第n−1步:在剩下未排序的2个数(a[0]
〜a[1])中,比较这两个数,若不符合次序要求,则对它们进行交换。本次操作后,a[0] 〜 a[1]中的最大元素“冒泡”到a[1]。
输入格式:
输入第一行给出一个不超过10的正整数n。第二行给出n个整数,其间以空格分隔。
输出格式:
在每一行中输出排序过程中对应步骤的中间结果,即每一步后a[0]〜 a[n−1]的值,相邻数字间有一个空格,行末不得有多余空格。
输入样例:
输入:
5 8 7 6 0 1
输出:
7 6 0 1 8 6 0 1 7 8 0 1 6 7 8 0 1 6 7 8
代码:
#include<stdio.h> int main() { int a[10],i,j,n,k,temp,flag; scanf("%d",&n); for
(i=0;i<n;i++) {scanf("%d",&a[i]);} if(n==1) printf("%d",a[0]); for(i=n-1;i>=1;i
--) { flag=1; for(j=0;j<i;j++) { if(a[j]>a[j+1]) { temp=a[j]; a[j]=a[j+1]; a[j+1
]=temp; flag=0; } } for(k=0;k<n-1;k++) { printf("%d ",a[k]); } printf("%d\n",a[n
-1]); } return 0; }