<>马科维茨均值方差模型

* 马科维茨均值-方差模型为多目标优化问题,有效前沿即多目标优化问题的pareto解(风险一定,收益最大;收益一定,风险最小)
* 马科维茨模型以预期收益率期望度量收益,以收益率方差度量风险
* 收益与风险计算函数portstats
* 函数语法:PortRisk
* PortReturn=portstats(ExpReturn,ExpCovariance,PortWts)
* 输入:ExpReturn,ExpCovariance,PortWts:资产预期收益率、资产的协方差矩阵、资产权重
* 输出:PortRisk,PortReturn:资产组合风险(标准差)、资产组合预期收益(期望)
* 例如:计算三家企业股票组合的风险与收益
* 代码如下: import numpy as np def portstats(ExpReturn, ExpCovariance, PortWts):
PortRisk= 0 for i in range(len(PortWts)): for j in range(len(PortWts)): PortRisk
+= PortWts[i] * PortWts[j] * ExpCovariance[i * 3 + j] PortReturn = np.sum(
ExpReturn* np.array(PortWts)) return np.sqrt(PortRisk), PortReturn #
组合中每个证券的预期收益率 ExpReturn = [0.000540, 0.000275, 0.000236] # 组合中证券的协方差矩阵
ExpCovariance= 0.0001 * np.array([5.27, 2.80, 1.74, 2.80, 4.26, 1.67, 1.74, 1.67
, 2.90]) ExpCovariance = ExpCovariance.tolist() # 组合中每个证券的初始权重(初始投资金额)/初始总金额
PortWts= 1.0 / 3 * np.array([1, 1, 1]) PortWts = PortWts.tolist() #
调用portstats函数 [PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance,
PortWts) print(PortRisk, PortReturn) # 计算结果
* 结果如下:
风险(标准差) PortRisk= 0.016617
组合收益率 PortReturn= 3.5033e-004

* 接下来进行有效前沿的计算
* 有效前沿计算函数PortRisk,
PortReturn,PortWts=frontcon(ExpReturn,ExpCovariance,NumPorts,PortReturn,AssetBounds,
Groups,GroupBounds,varargin)
* ExpReturn,ExpCovariance 资产预期收益率、资产的协方差矩阵
* NumPorts, 有效前沿上输出点的小数,默认为10
* AssetBounds 每种资产权重的上下限
* Groups,GroupBounds,varargin 资产分组、每个资产群约束
* 代码如下: import numpy as np import matplotlib.pyplot as plt # 绘图 import scipy.
optimizeas sco def frontcon(ExpReturn, ExpCovariance, NumPorts): noa = len(
ExpReturn) def statistics(weights): weights = np.array(weights) z = np.dot(
ExpCovariance, weights) x = np.dot(weights, z) port_returns = (np.sum(ExpReturn
* weights.T)) port_variance = np.sqrt(x) num1 = port_returns / port_variance
return np.array([port_returns, port_variance, num1]) # 定义一个函数对 方差进行最小化 def
min_variance(weights): return statistics(weights)[1] bnds = tuple((0, 1) for x
in range(noa)) # 在不同目标收益率水平(target_returns)循环时,最小化的一个约束条件会变化。 target_returns =
np.linspace(min(ExpReturn), max(ExpReturn), NumPorts) target_variance = []
PortWts= [] for tar in target_returns: # 在最优化时采用两个约束,1.给定目标收益率,2.投资组合权重和为1。 cons
= ({'type': 'eq', 'fun': lambda x: statistics(x)[0] - tar}, {'type': 'eq', 'fun'
: lambda x: np.sum(x) - 1}) res = sco.minimize(min_variance, noa * [1. / noa, ],
method='SLSQP', bounds=bnds, constraints=cons) target_variance.append(res['fun'
]) PortWts.append(res["x"]) target_variance = np.array(target_variance) return [
target_variance, target_returns, PortWts] ExpReturn = np.array([0.00540, 0.00275
, 0.00236]) ExpCovariance = 0.0001 * np.array([[5.27, 2.80, 1.74], [2.80, 4.26,
1.67], [1.74, 1.67, 2.90]]) NumPorts = 10 [target_variance, target_returns,
PortWts] = frontcon(ExpReturn, ExpCovariance, NumPorts) plt.plot(target_variance
, target_returns) plt.title("Mean-Variance-Efficient Frontier") plt.xlabel(
"Risk(Standard Deviation)") plt.ylabel("Expected Return") plt.show()
* 画图如下:

* 今天分享就到这,多学习,勤分享。

技术
下载桌面版
GitHub
Gitee
SourceForge
百度网盘(提取码:draw)
云服务器优惠
华为云优惠券
腾讯云优惠券
阿里云优惠券
Vultr优惠券
站点信息
问题反馈
邮箱:[email protected]
吐槽一下
QQ群:766591547
关注微信