[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
原图
矫正后
我新建了个jz的文件夹放相机矫正所需要拍摄的图片,如下:共12张
# coding:utf-8 import cv2 import numpy as np import glob # 找棋盘格角点 # 阈值 criteria
= (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) # 棋盘格模板规格
从0开始计算 w = 9 h = 6 # 世界坐标系中的棋盘格点,例如(0,0,0), (1,0,0), (2,0,0)
....,(8,5,0),去掉Z坐标,记为二维矩阵 objp = np.zeros((w * h, 3), np.float32) objp[:, :2] =
np.mgrid[0:w, 0:h].T.reshape(-1, 2) # 储存棋盘格角点的世界坐标和图像坐标对 objpoints = [] #
在世界坐标系中的三维点 imgpoints = [] # 在图像平面的二维点 # 匹配读取文件夹内的特定文件 images = glob.glob(
'jz/*.jpg') for fname in images: img = cv2.imread(fname) gray = cv2.cvtColor(img
, cv2.COLOR_BGR2GRAY) # 找到棋盘格角点 ret, corners = cv2.findChessboardCorners(gray, (
w, h), None) # 将角点在图像上显示 cv2.drawChessboardCorners(img, (w, h), corners, ret)
cv2.imshow('findCorners', img) cv2.waitKey(500) cv2.destroyAllWindows() #
如果找到足够点对,将其存储起来 if ret == True: cv2.cornerSubPix(gray, corners, (11, 11), (-1, -
1), criteria) objpoints.append(objp) imgpoints.append(corners) # 标定 ret, mtx,
dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],
None, None) # 在应用时,将下面两个写死 print(mtx) print(dist) # 去畸变 img2 = cv2.imread(
'77.jpg') h, w = img2.shape[:2] newcameramtx, roi = cv2.
getOptimalNewCameraMatrix(mtx, dist, (w, h), 0, (w, h)) # 自由比例参数 dst = cv2.
undistort(img2, mtx, dist, None, newcameramtx) # 根据前面ROI区域裁剪图片 # x,y,w,h = roi
# dst = dst[y:y+h, x:x+w] cv2.imwrite('1.jpg', dst) cv2.imshow('findCorners',
dst) cv2.waitKey(0) cv2.destroyAllWindows()