[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
<>python中使用递归实现斐波那契数列
python中使用递归实现斐波那契数列
<>先来了解一下
斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家莱昂纳多·斐波那契(Leonardoda
Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1,
F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从
1963 年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。*
使用递归返回前n项的斐波那契数列:
<>func_1(n-2)+func_1(n-1)此代码为本节代码的主要代码
def func_1(n):
if n == 0:
return 0
elif n == 1 or n == 2:
return 1
else:
return func_1(n-2)+func_1(n-1)
假设n取4
return func_1(2)+func_1(3)
func_1(2)带入函数则返回1,func_1(3)带入函数则返回 func_1(3-2)+func_1(3-1)即为
func_1(1)+func_1(2) ,带入函数为1+1 所以得出结论func_1(4)
=func_1(2)+func_1(3)=func_1(2)+func_1(1)+func_1(2)=3
<>刚才的递推函数只能返回第n各值,要想返回前n项值,得在外围建个函数将得出的值一一添加进去
代码实现:
def func(a):
def func_1(n):
if n == 0:
return 0
elif n == 1 or n == 2:
return 1
else:
return func_1(n-2)+func_1(n-1)
list_1 = []
for i in range(a):
list_1.append(func_1(i))
return list_1
print(func(20))
<>祝大家Python学习顺利!