[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
<>一阶低通滤波器
<>1. 一阶连续低通滤波器
y ( s ) r ( s ) = a s + a \frac{y(s)}{r(s)}=\frac{a}{s+a} r(s)y(s)=s+aa
<>2. 转换为离散形式
转换为微分方程:
y ˙ ( t ) + a y ( t ) = a r ( t ) \dot{y}(t)+ay(t)=ar(t) y˙(t)+ay(t)=ar(t)
用一阶前向差分离散化得:
y ( t ) ˙ = y [ ( k + 1 ) T ] − y ( k T ) T
\dot{y(t)}=\frac{y[(k+1)T]-y(kT)}{T}y(t)˙=Ty[(k+1)T]−y(kT)
即得到:
y [ ( k + 1 ) T ] − y ( k T ) T + a y ( k T ) = a r ( k T )
\frac{y[(k+1)T]-y(kT)}{T}+ay(kT)=ar(kT)Ty[(k+1)T]−y(kT)+ay(kT)=ar(kT)
y [ ( k + 1 ) T ] − y ( k T ) + T a y ( k T ) = T a r ( k T ) y[(k+1)T] -
y(kT)+Tay(kT)=Tar(kT)y[(k+1)T]−y(kT)+Tay(kT)=Tar(kT)
y [ ( k + 1 ) T ] = ( 1 − a T ) y ( k T ) + T a r ( k T ) y[(k+1)T]
=(1-aT)y(kT)+Tar(kT)y[(k+1)T]=(1−aT)y(kT)+Tar(kT)
<>3. 举例子
差分计算速度:
v ( k + 1 ) = ( 1 − a ) v ( k ) + a x ( k + 1 ) − x ( k ) T
v(k+1)=(1-a)v(k)+a\frac{x(k+1)-x(k)}{T}v(k+1)=(1−a)v(k)+aTx(k+1)−x(k)