[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
在
opencv根目录\sources\data\haarcascades中提供了很多训练好的分类器,我们使用haarcascade_frontalface_alt.xml分类器。
Haar cascade是Paul Viola和 Michael Jone在2001年,论文”Rapid Object Detection using a
Boosted Cascade of Simple Features”提出的一种Object Detection方法。
import cv2 # 读入图像 img = cv2.imread("test.jpg") # 加载人脸特征,该文件在
python安装目录\Lib\site-packages\cv2\data 下 face_cascade =
cv2.CascadeClassifier(r'haarcascade_frontalface_default.xml') #
将读取的图像转为COLOR_BGR2GRAY,减少计算强度 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #
检测出的人脸个数 faces = face_cascade.detectMultiScale(gray, scaleFactor = 1.15,
minNeighbors = 5, minSize = (5, 5)) print("Face : {0}".format(len(faces))) #
用矩形圈出人脸的位置 for(x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x + w, y + h),
(0, 255, 0), 2) cv2.namedWindow("Faces") cv2.imshow("Faces", img)
cv2.waitKey(0) cv2.destroyAllWindows()