[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
<>Matlab拟合曲线的方式
Matlab拟合曲线的方式有很多种,有三次样条插值、线性插值、多项式拟合等等。多项式拟合由于函数由 f ( x ) = a n x n + a n − 1
x n − 1 + . . . + a 1 x + a 0 f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0f(x)=anxn+
an−1xn−1+...+a1x+a0组成,若采用最小二乘法拟合,对于参数 a n , a n − 1 , . . . , a 1 , a 0
a_n,a_{n-1},...,a_1,a_0an,an−1,...,a1,a0来说,方程组 f n ( x ) = 0 f_n(x)=0 fn(x)
=0
是一个线性方程组,可以用Matlab求逆矩阵的方法,得到方程的最小二乘解。但如果参数构成的方程组并不是线性方程组,则不可以用矩阵的方法求得。使用样条插值和线性插值固然可以,但是得不到需要的表达式,此时使用非线性拟合方法解决最为合适。
通常,我们在实验前对模型都有一个假设,例如这是一个指数衰减的曲线,或者指数衰减振荡的曲线,或者是一个周期振荡的由若干个频率的三角函数叠加组成的信号。此时我们只需要指定需要估计的参数,代入数据求解即可。以下就是一个点典型的例子。
<>步骤解读
这个例子的数据是一个对一个惯性系统给定一个阶跃输入,对系统的输出进行采集,并辨别这个系统。
(xdata,ydata)是一个一阶系统阶跃响应的采集数据,ydata是输出值,xdata是时间戳。由于系统是阶跃响应,我们假定系统的传递函数是 K T
p s + 1 \frac{K}{T_ps+1}Tps+1K,显然需要辨别的两个参数是K和 T p T_p Tp。
该系统在阶跃响应输入下的始于表达式为 c ( t ) = K ( 1 − e t T P ) c(t)=K(1-\rm e^\frac{t}{T_P}) c
(t)=K(1−eTPt),因此需要建立的函数fun如下
fun=@(xdata,ydata)(x(1)*(1-exp(-xdata/x(2))))
是一个指定参数的函数,我们需要求解的参数就是x(1)和x(2),其中x返回值是一个二元参数向量,可直接调用fun函数求得y根据时间戳生成的辨识系统的计算值。并与实验值ydata画在一张图进行比较。
clc close all plot(xdata,ydata);xlim([0,1]);hold on;%实际曲线绘图 fun=@(x,xdata)(x(1)
*(1-exp(-xdata/x(2))));%估计函数 x0=[1500,0.025];%初始估计值[x(1),x(2)] x=lsqcurvefit(fun
,x0,xdata,ydata);%非线性函数拟合 y=fun(x,xdata);%代入估计的值,并获得函数点 plot(xdata,y);xlim([0,1]
);%绘制估计曲线 title(['[K,Tp]=',num2str(x)]);%标注估计的参数
绘制的预估曲线如下:(蓝色的是实验数据,红色的是拟合曲线)
可以发现,如果沿着实验曲线的大致趋势,拟合的指数逼近曲线如红色线所示,可见辨识的参数较为准确。