[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
<>sinx的泰勒展开式求解过程
思路:
sin x 可以如何 “ 展开 ”?写成式子就是:
最后以省略号结束,代表 “ 无穷 ”,需要求的就是 a0,a1,a2,…… 的值,准确地说就是通项公式。然后,我们就可以开始 “ 微分 ”
了,就是等式两边同时、不停地微分下去。左边的三角函数的微分,其实是四个一循环的:sin x ➜ cos x ➜ - sin x ➜ - cos x,再回到
sin x……我们也会注意到,凡是把右边微分后,第一项(常数)就为 0 了,也就是可以直接忽略。
这样一来,等式左边在有规律地循环着,等式右边每次都减少一项。当然,x = 0 时等式也会成立,那将 x = 0 带入,将消去所有 x 指数大于 0
的项(都是 0 啊)。这样一来,就可以顺利求出 a0,a1,a2,……啦,sin 0、cos 0、- sin 0 和 - cos x 分别是 0、+1
、0、-1(显然的规律)。上面是微分的过程,下面是对于所有系数得到的等式。
最后,等式左边是四个一循环,可以从除以 4 的余数来考虑(分类);然后,等是右边可以用字母来代替,就是 k! × ak,这里 k!
代表阶乘。所以说,我们可以得到一个看上去漂亮的结果:
如果将系数数列 a 代入,那么偶数项都会消掉(系数为 0),只剩下一加一减的奇数项了。这就是泰勒展开(其实泰勒展开有好几个,这里只是 sin x
的泰勒展开):
想法是不是很巧妙,哈哈?我也是看别人写的。其他各种复杂函数的展开式求解也采用相同的方法,很实用哦。