[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
由于在实际的项目中,使用DenseNet的模型做文字识别,为了提升识别效果在模型后接LSTM,但是在训练时出现了问题,发现Loss与Accuracy都保持不变。为了解决这个问题尝试打印每层的输出结果以排查问题。
测试代码:
# 用于测试 if __name__ == "__main__": reload(densenet2) characters =
keys.alphabet[:] characters = characters[1:] + u'卍' nclass = len(characters)
input = Input(shape=(32, None, 1), name='the_input') x =
densenet2.dense_cnn(input, nclass) rnnunit = 256 x = Bidirectional(GRU(rnnunit,
return_sequences=True, implementation=2), name='blstm1')(x) x = Dense(rnnunit,
name='blstm1_out', activation='linear')(x) x = Bidirectional(GRU(rnnunit,
return_sequences=True, implementation=2), name='blstm2')(x) y_pred =
Dense(nclass, name='out2', activation='softmax')(x) # 根据选择outputs的输出层 basemodel
= Model(inputs= input, outputs=y_pred) #basemodel.summary() #print("the lenth
of layer:{}".format(len(basemodel.layers))) i = -3 model = Model(inputs= input,
outputs=basemodel.layers[i].output)
model.load_weights("..\\100_test_50w_weights_densenet-71-0.08.h5",
by_name=True) out = predict("..\\img1.JPEG", model) name = model.layers[i].name
print("the net name is :{} \n the out is :\n {} ".format(name, np.array(out)))
说明:
* basemodel 是在densenet后接了lstm的网络
* model最终的模型,可以修改basemodel.layer[i].output的"i","i"指代的是网络的第几层,也可以通过读取网络层的名称的方式
* predict 自定义函数,主要调用的是框架中的model.predict()。其中还包括对图像进行预处理。