[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
一、drop_duplicates函数用途
pandas中的drop_duplicates()函数可以通过SQL中关键字distinct的用法来理解,根据指定的字段对数据集进行去重处理。
二、drop_duplicates()函数的具体参数
*
用法:
DataFrame.drop_duplicates(subset=None, keep=‘first’, inplace=False)
*
参数说明
参数 说明
subset 根据指定的列名进行去重,默认整个数据集
keep 可选{‘first’, ‘last’,
False},默认first,即默认保留第一次出现的重复值,并删去其他重复的数据,False是指删去所有重复数据。
inplace 是否对数据集本身进行修改,默认False
三、drop_duplicates用法举例
* 根据指定字段进行去重,保留第一次出现的数据 import pandas as pd #创建数据框 df=pd.DataFrame({ 'a':[1,2,
4,3,3,3,4], 'b':[2,3,3,4,4,5,3] }) print('去重前:\n',df) #根据字段a进行去重,保留第一次出现的数据 df.
drop_duplicates(['a'],keep='first',inplace=True) print('去重后:\n',df) >>> 去重前: a b
0 1 2 1 2 3 2 4 3 3 3 4 4 3 4 5 3 5 6 4 3 去重后: a b 0 1 2 1 2 3 2 4 3 3 3 4