[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
1 FLOPS
在描述GPU的性能时,我们常常用到FLOPS进行描述。FLOPS是floating point operations per second
的简写,即每秒所能够进行的浮点运算数目。
FLOPS = 单个算数流水线一个时钟内可执行指令数目 * 单核算数流水线个数 * GPU核心数目 * 运行频率。
通常是一个很大的数目,因此我们常常采用GFLOPS作为单位
2 FLOPs
FLOPs:floating point operations,表示浮点运算次数,小s后缀是复数的缩写,可以看作FLOPS在时间上的积分,区别类似距离和速度。
浮点运算主要就是W相关的乘法,以及b相关的加法,通常不考虑非线性函数的计算量。每一个W对应W中元素个数个乘法,每一个b对应一个加法,因此好像FLOPS个数核parameters是相同的。
但其实有一个地方我们忽略了,那就是每个feature map上每个点的权值是共享的,所以我们在计算FLOPs时,只需在parameters的基础上再乘以
feature map的大小即可。对于全连接层,由于不存在权值共享,它的FLOPs数目即是该层参数数目。