[{"createTime":1735734952000,"id":1,"img":"hwy_ms_500_252.jpeg","link":"https://activity.huaweicloud.com/cps.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=V1g3MDY4NTY=&utm_medium=cps&utm_campaign=201905","name":"华为云秒杀","status":9,"txt":"华为云38元秒杀","type":1,"updateTime":1735747411000,"userId":3},{"createTime":1736173885000,"id":2,"img":"txy_480_300.png","link":"https://cloud.tencent.com/act/cps/redirect?redirect=1077&cps_key=edb15096bfff75effaaa8c8bb66138bd&from=console","name":"腾讯云秒杀","status":9,"txt":"腾讯云限量秒杀","type":1,"updateTime":1736173885000,"userId":3},{"createTime":1736177492000,"id":3,"img":"aly_251_140.png","link":"https://www.aliyun.com/minisite/goods?userCode=pwp8kmv3","memo":"","name":"阿里云","status":9,"txt":"阿里云2折起","type":1,"updateTime":1736177492000,"userId":3},{"createTime":1735660800000,"id":4,"img":"vultr_560_300.png","link":"https://www.vultr.com/?ref=9603742-8H","name":"Vultr","status":9,"txt":"Vultr送$100","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":5,"img":"jdy_663_320.jpg","link":"https://3.cn/2ay1-e5t","name":"京东云","status":9,"txt":"京东云特惠专区","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":6,"img":"new_ads.png","link":"https://www.iodraw.com/ads","name":"发布广告","status":9,"txt":"发布广告","type":1,"updateTime":1735660800000,"userId":3},{"createTime":1735660800000,"id":7,"img":"yun_910_50.png","link":"https://activity.huaweicloud.com/discount_area_v5/index.html?fromacct=261f35b6-af54-4511-a2ca-910fa15905d1&utm_source=aXhpYW95YW5nOA===&utm_medium=cps&utm_campaign=201905","name":"底部","status":9,"txt":"高性能云服务器2折起","type":2,"updateTime":1735660800000,"userId":3}]
今天有一个小盆友对他们的课程里一道题存在疑问过来问我,说是要求必须应用贝叶斯公式,题目如下:
已知某病发病率5%,假阴率5%,假阳率5%,如果一个人检出了阳性结果,那么他患该病的可能性有多大?
首先需要说明,假阳就是把没病的检成有病的,假阴就是把有病的检成没病的。
然后搬出贝叶斯公式:
p(x∣y)=p(x)∗p(y∣x)p(y)=p(x)∗p(y∣x)∑i=1np(xi)∗p(y∣xi) \begin{aligned} p(x|y) &=
\frac {p(x)*p(y|x)} {p(y)} \\ &= \frac {p(x)*p(y|x)}
{\sum_{i=1}^np(x_i)*p(y|x_i)} \end{aligned}p(x∣y)=p(y)p(x)∗p(y∣x)=∑i=1np(xi)
∗p(y∣xi)p(x)∗p(y∣x)
令p(x)为发病率,p(y)为检出阳性的概率,那么p(x|y)就是检出阳性时患病的概率,p(y|x)就是已知患病了检出阳性的概率(也就是真阳率)。
所以我们的结果就是p(x|y)的值,接下来捋一捋其他三个值:
* p(x)发病率题目中已经给出为5%
* p(y|x)为真阳率,用1减去假阴率(真阳就是有病检出有病,假阴是有病检出没病),为95%
* p(y)为检出阳性的概率,分为两块,一个是有病检出有病,另一个是没病的检出有病(发病率x真阳率+未发病率x假阳率):5%*95%+(1-5%)*5%
p(y)用公式表示更能说明问题:
p(y)=p(x)∗p(y∣x)+p(xˉ)∗p(y∣xˉ)p(y)=p(x)*p(y|x)+p(\bar{x})*p(y|\bar{x})p(y)=p(x)
∗p(y∣x)+p(xˉ)∗p(y∣xˉ)
p(y∣xˉ)p(y|\bar{x})p(y∣xˉ)为没病检出有病,即假阳率。p(y)放到贝叶斯公式里,即为:
p(x∣y)=p(x)∗p(y∣x)p(x)∗p(y∣x)+p(xˉ)∗p(y∣xˉ)=5%∗95%5%∗95%+(1−5%)∗5%=50%
\begin{aligned} p(x|y) &= \frac {p(x)*p(y|x)}
{p(x)*p(y|x)+p(\bar{x})*p(y|\bar{x})} \\ &= \frac {5\%*95\%}
{5\%*95\%+(1-5\%)*5\%} \\ &= 50\% \end{aligned}p(x∣y)=p(x)∗p(y∣x)+p(xˉ)∗p(y∣xˉ)
p(x)∗p(y∣x)=5%∗95%+(1−5%)∗5%5%∗95%=50%
所以我们的答案就是50%,3个5%的值最后准确率只有50%,所以假阳率和假阴率看起来小实际上影响很大。